Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Int J Biol Macromol ; : 135550, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278440

RESUMEN

Hyperuricemia, a prevalent metabolic disturbance intricately linked to gout and chronic kidney disease (CKD), may be relieved by traditional Chinese medicine Polygonati Rhizoma. It is derived from the rhizomes of Polygonatum sibiricum, Polygonatum kingianum, and Polygonatum cyrtonema, which are rich in polysaccharides and are effective hyperuricemia alleviators. This study investigated the potential of Polygonatum sibiricum polysaccharide (PSP) in managing hyperuricemia. PSP (125, 250, and 500 mg/kg, i.g.) or allopurinol was administered to hyperuricemia mice treated with potassium oxonate and hypoxanthine for two weeks. PSP effectively decreased serum uric acid levels by inhibiting xanthine oxidase and adenosine deaminase activity and expression in the liver and modulating uric acid-related transporters (URAT1, OAT1, and OAT3) in the kidney. PSP lowered serum creatinine and blood urea nitrogen levels, alleviating hyperuricemia-induced renal tubular epithelial-mesenchymal fibrosis. In vitro, PSP promoted mitochondrial biogenesis via the PGC-1α/NRF1/TFAM pathway, suppressed reactive oxygen species production, and prevented cytochrome C and dynamin-related protein 1 dysregulation in HK-2 cells. Furthermore, PSPA (Mw 4.0 kDa) and PSPB (Mw 112.2 kDa) isolated from PSP exhibit different uric acid-lowering mechanisms. In conclusion, our findings highlight the therapeutic potential of PSP and its nephroprotective effects in hyperuricemia, thereby supporting its development as a therapeutic agent for hyperuricemia.

2.
Cureus ; 16(7): e64468, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39139335

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) is becoming increasingly prevalent worldwide, particularly among the elderly, along with an increase in the incidence of hypertension and cardiovascular disorders. Developing lipid-based oral dosage forms with a higher expected bioavailability of antihypertensive drugs with nephroprotective effects poses a challenge. Lercanidipine hydrochloride (LRCH) is a newer type of third-generation dihydropyridine calcium channel blocker that functions as an antihypertensive and has significant nephroprotective effects. Due to its extensive first-pass metabolism, its bioavailability is about 10% and increases to 3-4 times when taken with a high-fat meal. Targeting this drug to the lymphatic system using the solid self-nano-emulsifying drug delivery system (SSNEDDS) is a promising approach for improving LRCH's bioavailability and dispersion rate. SSNEDDS combines the benefits of both liquid self-emulsifying and solid dosage forms, improving drug stability and extending storage time. MATERIALS AND METHODS: In this study, liquid SNEDDS composed of 10% peppermint oil, 67% Tween 20, and 22.5% propylene glycol was solidified using two adsorbent agent mixtures (SSNEDDS1: Avicel PH 101 and Aerosil 200) and (SSNEDDS2: Avicel PH 102 and Aerosil 200) separately. The prepared formulations were evaluated for powder flow, drug content, and an in-vitro dispersion test in comparison to the brand-marketed tablet as a standard or pure drug. DSC and X-ray diffraction analysis were also used. RESULTS: The SSNEDDS2 shows excellent flowability, a higher drug content (99.761%), and a significantly higher and faster dispersion rate of 100% within 10 minutes compared to 92% of the marketed LRCH tablet and 18.1% of the pure drug for 60 minutes. The solid-state characterization of the formulation composed of SSNEDDS2 confirmed that the LRCH was in an amorphous form inside the solidified nano system without interacting with the excipient. CONCLUSION: This study successfully prepared LRCH using the promising strategy of SSNEDDS as a hard gelatin capsule with a higher dispersion rate. It improved its stability and expected bioavailability compared to the brand-marketed tablet as the standard.

3.
J Ethnopharmacol ; 335: 118606, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39038504

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Palmatine is a main bioactive alkaloid of Cortex Phellodendri, which has been commonly prescribed for the treatment of hyperuricemia (HUA) in China. The metabolites of palmatine were crucial to its prominent biological activity. 9-Hydroxy-8-oxypalmatine (9-OPAL) is a novel liver-mediated secondary oxymetabolite of palmatine. AIM OF THE STUDY: The current study was to assess the efficacy of 9-OPAL, a novel liver-mediated secondary oxymetabolite of palmatine derived from Cortex Phellodendri, in experimental HUA mouse model and further explore its underlying mechanism. MATERIALS AND METHODS: An in vitro metabolic experiment with oxypalmatine was carried out using liver samples. We separated and identified a novel liver metabolite, and investigated its anti-HUA effect in mice. HUA mice were induced by potassium oxonate and hypoxanthine daily for one week. After 1 h of modeling, mice were orally administered with different doses of 9-OPAL (5, 10 and 20 mg/kg). The pathological changes of the kidneys were evaluated using hematoxylin-eosin staining (H&E). The acute toxicity of 9-OPAL was assessed. The effects of 9-OPAL on serum levels of uric acid (UA), adenosine deaminase (ADA), xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN) and inflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) or biochemical method. Furthermore, Western blot, quantitative real-time PCR (qRT-PCR) and molecular docking were used to investigate the effect of 9-OPAL on the expression of renal urate transporters and NLRP3 signaling pathway in HUA mice. RESULTS: 9-OPAL had been discovered to be a novel liver-mediated oxymetabolite of palmatine for the first time. Treatment with 9-OPAL significantly reduced the UA, CRE as well as BUN levels, and also effectively attenuated abnormal renal histopathological deterioration with favorable safety profile. Besides, 9-OPAL significantly decreased the serum and hepatic activities of XOD and ADA, dramatically inhibited the up-regulation of UA transporter protein 1 (URAT1) and glucose transporter protein 9 (GLUT9), and reversed the down-regulation of organic anion transporter protein 1 (OAT1). Additionally, 9-OPAL effectively mitigated the renal inflammatory markers (TNF-α, IL-1ß, IL-6 and IL-18), and downregulated the transcriptional and translational expressions of renal Nod-like receptor family pyrin domain containing 3 (NLRP3), caspase-1, apoptosis-associated speck-like (ASC) and IL-1ß in HUA mice. Molecular docking results revealed 9-OPAL bound firmly with XOD, OAT1, GLUT9, URAT1, NLRP3, caspase-1, ASC and IL-1ß. CONCLUSIONS: 9-OPAL was found to be a novel liver-mediated secondary metabolite of palmatine with favorable safety profile. 9-OPAL had eminent anti-hyperuricemic and renal-protective effects, and the mechanisms might be intimately associated with repressing XOD activities, modulating renal urate transporter expression and suppressing the NLRP3 inflammasome activation. Our investigation might also provide further experimental evidence for the traditional application of Cortex Phellodendri in the treatment of HUA.


Asunto(s)
Alcaloides de Berberina , Hiperuricemia , Riñón , Hígado , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Alcaloides de Berberina/farmacología , Ratones , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Ácido Úrico/sangre , Modelos Animales de Enfermedad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Ácido Oxónico , Transportadores de Anión Orgánico
4.
Clin Ther ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964935

RESUMEN

PURPOSE: Diabetic nephropathy represents the leading cause of end-stage kidney disease in developed countries. Cardiovascular outcome trials have found that in participants who received a glucagon-like peptide-1 receptor agonist (GLP1RA) and a sodium-glucose cotransporter 2 inhibitor (SGLT2i), the risk of incidence and progression of diabetic nephropathy in type 2 diabetes mellitus was reduced. The aim of this study was to compare the decline in estimated glomerular filtration rate (eGFR) among people taking a GLP1RA with that among people taking an SGLT2i in a real-world setting. METHODS: Data for 478 patients with type 2 diabetes mellitus who initiated therapy with a GLP1RA (n = 254) or an SGLT2i (n = 224) between January 1, 2018 and December 31, 2021 were extracted. The primary outcome was any reduction ≥30% in eGFR after the start of therapy. Weight loss and drug discontinuation were also assessed. FINDINGS: Over a median follow-up of 24 months, an eGFR reduction ≥30% occurred in 34 of 254 patients (13.4%) starting a GLP1RA and in 26 of 223 patients (11.6%) starting an SGLT2i (hazard ratio = 0.89; 95% CI, 0.54-1.49; P = 0.67). Median eGFR change over the whole follow-up was similar between groups (SGLT2i: median, -2 mL/min/1.73 m2; 25th, 75th percentile, -13, 8 mL/min/1.73 m2; GLP1RA: median, 0 mL/min/1.73 m2; 25th, 75th percentile, -10, 7 mL/min/1.73 m2; P = 0.54). No worsening of kidney function was observed, even when considering the ratio eGFR mean. The value of eGFR at baseline indicated a statistically significant indirect correlation with the observed absolute value of eGFR change over the follow-up (ρ = -0.36; P < 0.001). The difference in eGFR changes over time observed by eGFR categories was statistically significant (P = 0.0001) in both treatment groups. No significant differences in weight loss and drug discontinuations were observed between groups. IMPLICATIONS: Although acting on different molecular mechanisms, both GLP1RA and SGLT2i might have similar effects on eGFR decline in diabetes, as suggested by the results of the present study conducted in a real-world setting. (Clin Ther. 2024;46:XXX-XXX) © 2024 Elsevier HS Journals, Inc.

5.
Biol Trace Elem Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833108

RESUMEN

It is said that a wide range of renal functions are at risk from arsenic exposure. We examined how lactoferrin administration may mitigate inflammation, apoptosis, redox imbalance, and fibrosis in order to counteract arsenic-induced nephrotoxicity. Accordingly, male C57BL/6 mice (6 weeks) were divided into six experimental groups with six mice in each group. The first and second groups were intragastrically administered normal saline and sodium arsenite (NaAsO2) at 5 mg/kg body weight concentrations as the negative control (NC) and NaAsO2 groups. The third, fourth, and fifth groups were intragastrically administered lactoferrin at concentrations of 100, 200, and 400 mg/kg body weight in addition to NaAsO2 at concentrations of 5 mg/kg body weight. The sixth group was intragastrically administered lactoferrin at a concentration of 200 mg/kg body weight with the experimental group set as the lactoferrin group. After daily drug administration for 4 weeks, the lactoferrin concentrations were optimized based on the results of renal index and renal function. Histopathological, biochemical, and gene expression analyses were performed to evaluate the status of renal tissue architecture, redox imbalance, inflammation, apoptosis, and fibrosis to confirm the alleviative effect of lactoferrin treatment against the NaAsO2 exposure-induced nephrotoxicity. The results confirmed that the 200 mg/kg lactoferrin treatment mitigated these arsenic effects and maintained the normal renal frameworks. Conclusively, disrupting the renal redox balance and triggering inflammation, apoptosis, along with fibrosis is a milieu that arsenic, robustly exerts its nephrotoxic effect. Lactoferrin, probably by its direct and indirect control mechanism on these said pathways, can mitigate the nephrotoxicity and preserve the normal renal health.

6.
Am J Physiol Renal Physiol ; 327(1): F137-F145, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779756

RESUMEN

Polymyxins are a last-resort treatment option for multidrug-resistant gram-negative bacterial infections, but they are associated with nephrotoxicity. Gelofusine was previously shown to reduce polymyxin-associated kidney injury in an animal model. However, the mechanism(s) of renal protection has not been fully elucidated. Here, we report the use of a cell culture model to provide insights into the mechanisms of renal protection. Murine epithelial proximal tubular cells were exposed to polymyxin B. Cell viability, lactate dehydrogenase (LDH) release, polymyxin B uptake, mitochondrial superoxide production, nuclear morphology, and apoptosis activation were evaluated with or without concomitant gelofusine. A megalin knockout cell line was used as an uptake inhibition control. Methionine was included in selected experiments as an antioxidant control. A polymyxin B concentration-dependent reduction in cell viability was observed. Increased viability was observed in megalin knockout cells following comparable polymyxin B exposures. Compared with polymyxin B exposure alone, concomitant gelofusine significantly increased cell viability as well as reduced LDH release, polymyxin B uptake, mitochondrial superoxide, and apoptosis. Gelofusine and methionine were more effective at reducing renal cell injury in combination than either agent alone. In conclusion, the mechanisms of renal protection by gelofusine involve decreasing cellular drug uptake, reducing subsequent oxidative stress and apoptosis activation. These findings would be valuable for translational research into clinical strategies to attenuate drug-associated acute kidney injury.NEW & NOTEWORTHY Gelofusine is a gelatinous saline solution with the potential to attenuate polymyxin-associated nephrotoxicity. We demonstrated that the mechanisms of gelofusine renal protection involve reducing polymyxin B uptake by proximal tubule cells, limiting subsequent oxidative stress and apoptosis activation. In addition, gelofusine was more effective at reducing cellular injury than a known antioxidant control, methionine, and a megalin knockout cell line, indicating that gelofusine likely has additional pharmacological properties besides only megalin inhibition.


Asunto(s)
Antibacterianos , Apoptosis , Polimixina B , Animales , Polimixina B/farmacología , Ratones , Apoptosis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Supervivencia Celular/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/patología , Línea Celular , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo
7.
J Agric Food Chem ; 72(21): 12083-12099, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38757561

RESUMEN

The development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.


Asunto(s)
Hiperuricemia , Péptidos , Atún , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ratones , Humanos , Ácido Úrico/metabolismo , Ácido Úrico/sangre , Péptidos/administración & dosificación , Péptidos/química , Péptidos/farmacología , Masculino , Proteínas de Peces/química , Xantina Oxidasa/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Línea Celular , Riñón/efectos de los fármacos , Riñón/metabolismo
8.
J Exp Pharmacol ; 16: 189-200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736464

RESUMEN

Background: Cisplatin chemotherapy induces nephrotoxicity by producing reactive oxygen species, hence, discovering add-on nephroprotective drugs for patients with cancer is challenging. Boesenbergia rotunda has been reported for its antioxidant properties. Purpose: This study aims to explore the nephroprotective mechanism of the ethanol extract of Boesenbergia rotunda rhizome (EEBR) in cisplatin-induced rats. Methods: The rats were randomly assigned into 6 groups: the normal control (treated with saline); the negative control (cisplatin-induced without any treatment); the positive control (treated with quercetin 50 mg/kg BW); and 3 treatment EEBR (125 mg/kg BW; 250 mg/kg BW; 500 mg/kg BW) groups for 10 days. The % relative organ weight, kidney histopathology, and nephrotoxicity biomarkers expression were evaluated. Results: EEBR decreased creatinine, urea nitrogen, glutamic pyruvate transaminase, and malondialdehyde levels in the blood of cisplatin-induced rats. An insignificant increase in GOT was observed in rats treated with the highest dose of EEBR. EEBR did not significantly alter the BW and the % kidney relative weight. An abnormal shape of the Bowman capsule is observed in the negative control group. EEBR reduced the expression of Havcr1 (KIM-1), Lcn2 (NGAL), Casp3, and Casp7 genes in rats' kidneys. Conclusion: Boesenbergia rotunda could be considered a potential candidate for add-on therapy in cisplatin-treated patients, but further studies are needed to verify its efficacy and safety.

9.
Cureus ; 16(4): e57947, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738116

RESUMEN

Background The nephrotoxic side effects of gentamicin, a potent aminoglycoside antibiotic, significantly restrict its clinical use. Identifying compounds that can mitigate this nephrotoxicity is of paramount importance. The research examines how the ethanolic extract of Carica papaya seeds (EECPS) and isoliquiritigenin (ISL), a flavonoid separated from them, protect the kidneys and fight free radicals in gentamicin-treated Wistar albino rats. Methodology A total of 48 mature Wistar albino rats were divided into eight groups, with each group consisting of six rats. The experimental setup included a normal control group receiving oral saline as a negative control, and a standard control group administered gentamicin intraperitoneally (IP) at 100 mg/kg body weight for 13 days to induce nephrotoxicity, followed by oral silymarin at 100 mg/kg body weight as a positive control from days 14 to 21. A toxicant control group was exposed to gentamicin IP without subsequent treatment. Two test groups were given 400 mg/kg and 800 mg/kg of EECPS orally after being given gentamicin. Three other test groups were given 20 mg/kg, 40 mg/kg, and 80 mg/kg of ISL orally after being given gentamicin. Serum levels of creatinine, urea, and blood urea nitrogen (BUN) were used to test renal function. Malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH), which are signs of oxidative stress, were also measured in renal tissues. Results Gentamicin administration markedly increased serum creatinine, urea, and BUN levels, confirming its nephrotoxic effect. Nephroprotection depended on the dose of EECPS and ISL used. It was found that 80 mg/kg of ISL had the most powerful effect, which was not what was thought at first. These treatments effectively reduced MDA and NO levels while enhancing GSH levels, exhibiting their strong antioxidant properties. Notably, the nephroprotective efficacy of these treatments exceeded that of silymarin, a known nephroprotective agent. Histopathological analysis confirmed reduced renal damage and enhanced tissue repair in the treated groups. Conclusions These findings demonstrate how effective EECPS and ISL are at shielding the kidneys from gentamicin-caused damage. They do this by acting as antioxidants and nephroprotectants. Their ability to protect kidney function and fight oxidative stress makes them interesting as possible treatments for gentamicin-related kidney damage. These results advocate for further investigation into the utility of these natural compounds in the management of nephrotoxicity.

10.
Nat Prod Res ; : 1-6, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652839

RESUMEN

This study was aimed at investigating the ability of extract of Annona muricata (AM) flower-petals in ameliorating the toxic effects of acetaminophen on the kidneys of albino rats. The biochemical results showed a marked increase in AM 200 mg (32.84 ± 0.14) and AM 400 mg (32.64 ± 0.78). Increase levels of total protein in AM 200 mg (77.00 ± 5.65) displays nephroprotective potential of the flower extract. Reduction of renal activities of serum urea in AM 400 mg group (6.41 ± 0.22) indicates its protective potency against acetaminophen induced kidney damage. Increased activities of SOD levels at 200 mg (4.97 ± 0.05) and CAT levels at 200 mg (23.39 ± 1.13). This study showed that A. muricata has good prospects of being a nephroprotective drug candidate.

11.
Environ Toxicol ; 39(7): 4014-4021, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613516

RESUMEN

Coriander is a notable medicinal plant known for its diverse properties, including anti-inflammatory, antioxidant, anticancer, analgesic, and anti-diabetic effects. Despite its recognized health benefits, research on its nephroprotective properties is limited. This study aimed to investigate the potential nephroprotective properties of an aqueous extract derived from coriander leaves using an aristolochic acid-intoxicated zebrafish model. To assess kidney abnormalities induced by aristolochic acid (AA), we utilized the transgenic line Tg(wt1b:egfp), which expresses green fluorescent protein (GFP) in the kidney. Our previous report indicated that AA exposure leads to acute renal failure in zebrafish characterized by kidney malformation and impaired renal function. However, pretreatment of coriander extract (CE) can mitigate kidney malformations induced by AA. In addition, CE pretreatment reduces the accumulation of red blood cells in the glomerular region. To verify the nephroprotective effects of CE, we analyzed renal function by measuring the glomerular filtration rate in zebrafish embryos. Results indicate that CE partially mitigates renal function impairment caused by AA exposure, suggesting its potential to attenuate AA-induced renal failure. Mechanistically, pretreatment with CE reduces the expression of proinflammatory and proapoptotic genes induced by AA. This suggests that CE likely alleviates acute renal failure by reducing inflammation and apoptosis. As a result, we regard zebrafish as a valuable model for screening natural compounds that have the potential to alleviate AA-induced nephrotoxicity.


Asunto(s)
Ácidos Aristolóquicos , Coriandrum , Embrión no Mamífero , Riñón , Extractos Vegetales , Hojas de la Planta , Pez Cebra , Animales , Ácidos Aristolóquicos/toxicidad , Extractos Vegetales/farmacología , Hojas de la Planta/química , Embrión no Mamífero/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Coriandrum/química , Animales Modificados Genéticamente , Sustancias Protectoras/farmacología
12.
Drug Deliv ; 31(1): 2337423, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38590120

RESUMEN

The present study was designed to develop a self-micellizing solid dispersion (SMSD) containing Thymoquinone (TQM), a phytonutrient obtained from Nigella sativa seeds, aiming to improve its biopharmaceutical and nephroprotective functions. The apparent solubility of TQM in polymer solutions was used to choose an appropriate amphiphilic polymer that could be used to make an SMSD system. Based on the apparent solubility, Soluplus® was selected as an appropriate carrier, and mixing with TQM, SMSD-TQM with different loadings of TQM (5-15%) was made by solvent evaporation and freeze-drying techniques, respectively, and the formulations were optimized. The optimized SMSD-TQM was evaluated in terms of particle size distribution, morphology, release characteristics, pharmacokinetic behavior, and nephroprotective effects in a rat model of acute kidney injury. SMSD-TQM significantly improved the dissolution characteristics (97.8%) of TQM in water within 60 min. Oral administration of SMSD-TQM in rats exhibited a 4.9-fold higher systemic exposure than crystalline TQM. In a cisplatin-induced (6 mg/kg, i.p.) acute kidney-damaged rat model, oral SMSD-TQM (10 mg/kg) improved the nephroprotective effects of TQM based on the results of kidney biomarkers and histological abnormalities. These findings suggest that SMSD-TQM might be efficacious in enhancing the nephroprotective effect of TQM by overcoming biopharmaceutical limitations.


Asunto(s)
Productos Biológicos , Micelas , Ratas , Animales , Ratas Sprague-Dawley , Benzoquinonas , Solubilidad , Administración Oral , Disponibilidad Biológica
13.
Urologiia ; (1): 129-134, 2024 Mar.
Artículo en Ruso | MEDLINE | ID: mdl-38650418

RESUMEN

An analysis and review of domestic and foreign literature on the role of N-acetylcysteine in the correction of oxidative stress, as well as the problem of oxidative stress, and protection against free radicals are presented in the article. The important role of N-acetylcysteine in replenishing the intracellular glutathione level, which is the main cell antioxidant, has been shown, as well as the potential use of N-acetylcysteine for various pathological conditions and diseases. The relevance of concomitant injury and renal dysfunction, and the experience of the clinical use of N-acetylcysteine as a nephroprotector in patients with concomitant injury in the clinic of the Department of Faculty and Endoscopic Surgery of KBSU named after Kh.M. Berbekov are also described. After reviewing the literature, based on the results of many experimental studies, we can conclude that this pharmacological substance is a very promising for replenishing the intracellular glutathione pool, and it becomes possible to include it in the combined therapy of a number of human diseases.


Asunto(s)
Acetilcisteína , Estrés Oxidativo , Humanos , Acetilcisteína/uso terapéutico , Acetilcisteína/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Glutatión/metabolismo , Enfermedades Renales/tratamiento farmacológico , Antioxidantes/uso terapéutico
14.
Drug Chem Toxicol ; : 1-14, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529813

RESUMEN

Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from Phoenix dactylifera (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (p < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.

15.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38541120

RESUMEN

Background and Objectives: Diabetes mellitus is a chronic metabolic disease associated with several complications, including that of kidney disease. Plant-based dietary products have shown promise in mitigating these effects to improve kidney function and prevent tissue damage. This study assessed the possible favorable effects of beetroot extract (BE) in improving kidney function and preventing tissue damage in diabetic rats. Materials and Methods: Type 2 diabetes mellitus (T2DM) was induced using a low dose of streptozotocin (STZ). Both control and rats with pre-established T2DM were divided into six groups (each consisting of eight rats). All treatments were given by gavage and continued for 12 weeks. Fasting blood glucose levels, serum fasting insulin levels, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum triglycerides, cholesterol, low-density lipoprotein-cholesterol, serum and urinary albumin, and creatinine and urea levels were measured. Apart from this, glutathione, malondialdehyde, superoxide dismutase, tumor necrosis factor-α, and interleukine-6 in the kidney homogenates of all groups of rats were measured, and the histopathological evaluation of the kidney was also performed. Results: It was observed that treatment with BE increased body weight significantly (p ≤ 0.05) to be similar to that of control groups. Fasting glucose, insulin, HOMA-IR levels, and lipid profile in the plasma of the pre-established T2DM rats groups decreased to p ≤ 0.05 in the BE-treated rats as the BE concentration increased. Treatment with BE also improved the renal levels of oxidative stress and inflammatory markers, urinary albumin, and serum creatinine and urea levels. Unlike all other groups, only the kidney tissues of the T2DM + BE (500 mg/kg) rats group showed normal kidney tissue structure, which appears to be similar to those found in the kidney tissues of the control rats groups. Conclusion: we found that streptozotocin administration disturbed markers of kidney dysfunction. However, Beta vulgaris L. root extract reversed these changes through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.


Asunto(s)
Beta vulgaris , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Beta vulgaris/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metanol/farmacología , Metanol/uso terapéutico , Estreptozocina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucemia , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Insulina , Estrés Oxidativo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Colesterol , Albúminas
16.
J Tradit Complement Med ; 14(2): 203-214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38481546

RESUMEN

Doxorubicin (DOX), an anthracycline chemotherapy, plays a prominent role in the treatment of various cancers. Unfortunately, its nephrotoxic effects limit its dosing and expose cancer survivors to increased morbidity and mortality. This study examined the nephroprotective effects of eriodictyol, a natural polyphenolic flavanone, in DOX-treated rats and the molecular pathways involved. Forty adult rats were divided into five groups (8/group): Control; eriodictyol (20 mg/kg/day); DOX (2.5 mg/kg, twice/week); DOX + Eriodictyol; and DOX + Eriodictyol + Compound C (CC), an AMPK inhibitor (0.2 mg/kg/day). Experiments continued for 21 days. Eriodictyol administration in DOX-treated rats reduced their fasting glucose levels and increased food intake, final body weight, and kidney weight, improved kidney function, prevented glomerular and tubular damage, and reduced collagen deposition and renal TGF-ß1 mRNA levels. Furthermore, eriodictyol reduced their renal levels of Bax, caspase-3, and cytochrome-c; and enhanced the levels of Bcl2. Noticeably, in the kidneys of both controls and DOX-treated rats, eriodictyol increased levels of phosphorylated-AMPK(Thr172) but not AMPK mRNA nor protein levels. Also, in the same two groups, eriodictyol increased mRNA and nuclear Nrf2 levels, and levels of glutathione, superoxide dismutase, catalase, and hemeoxygenase-1, but reduced the levels of malonaldehyde, TNF-α, and mRNA, total, and nuclear levels of NF-κB. All the detected nephroprotective effects and improvements in the levels of markers of oxidation and inflammation were prevented by coadministration of CC. In conclusion, the coadministration of eriodictyol and DOX alleviates DOX-induced renal damage. In renal tissues, eriodictyol is an AMPK activator and its nephroprotective antioxidant and anti-inflammatory effects are AMPK-dependent.

17.
Drug Metab Pers Ther ; 39(1): 35-45, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469711

RESUMEN

OBJECTIVES: Diabetic nephropathy is a chief reason of mortality particularly in individuals with renal dysfunction. The current research was aimed to assess the nephroprotective portion of Vaccinium oxycoccos toward mice diabetic nephropathy induced by streptozotocin (STZ). V. oxycoccos was purchased and used for hydroalcoholic extraction. METHODS: Sixty male mice were subjected to STZ-intraperitoneal injection (45 mg/kg). After diabetes induction, mice were divided into five groups of diabetic control (received only STZ), non-diabetic control (received only citrate buffer), two V. oxycoccos treatment (received V. oxycoccos extract (200 and 400 mg/kg) oral daily by gavage), and metformin treatment (received metformin (500 mg/kg) oral daily by gavage). Glucose and weight of mice were checked weekly. RESULTS: After 28 days, the effect of V. oxycoccos extract on serum and urine parameters were assessed. STZ caused significant decreased in the mice body weight. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest weight loss at day 28 (70.2±1.38 g). STZ caused significant increase in the mice FBS. Mice treated with the V. oxycoccos (400 mg/kg) harbored the lowest FBS at day 28 (189.2±1.20 mg/dL). Treatment of mice with V. oxycoccos (400 mg/kg) caused the lowest increase in the levels of cholesterol, HbA1c and triglycerides compared to the diabetic control mice. Compared to the diabetic control group, mice treated with V. oxycoccos (400 mg/kg) had the highest HDL, insulin, SOD, and GSH (p<0.05). The lowest serum BUN, CR, and UR were found in mice treated with V. oxycoccos (400 mg/kg). Anti-inflammatory effects of V. oxycoccos (400 mg/kg) was shown by the lowest TNF-α, IL-6, and TGF-ß1 concentration in mice treated with V. oxycoccos (400 mg/kg). CONCLUSIONS: The current study disclosed that treatment with V. oxycoccos resulted in substantial development in the serum and urine parameters and also antioxidant and anti-inflammatory response of STZ-induced diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Metformina , Vaccinium macrocarpon , Vaccinium , Ratones , Masculino , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/inducido químicamente , Estreptozocina/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Metformina/uso terapéutico , Extractos Vegetales/efectos adversos , Antiinflamatorios/uso terapéutico , Glucemia
18.
Heliyon ; 10(3): e25058, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317880

RESUMEN

The purpose of this inquiry is to provide a conprehensive summary and analysis of the literature concerning the pharmacological properties of components that can be extracted from Desmodium styracifolium, a preparation in Chinese medicine. This study also aims to explore their potential application in elaborating medicinal products for the effective prevention and treatment of such conditions as urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, pro-oxidant and inflammatory processes, etc. Several experimental studies confirmed the potential of D. styracifolium to influence mineral metabolism, to decrease the concentration of constituents involved in the formation of urinary calculi, and to reduce mineral encrustation in the urinary tract, as well as to alleviate the damage caused by crystal structures. This beneficial impact is achieved through a combination of antioxidant and anti-inflammatory actions, along with urine alkalinization. The cholelitholytic, choleretic, and hepatoprotective effects of D. styracifolium plants have been confirmed, primarily ascribed to the activation of the hepatic Xα receptor and the bile acid receptor, farnesoid X receptor, by the flavonoid shaftoside. Special attention is focused on the potential therapeutic applications of flavonoids derived from D. styracifolium for diseases associated with the development of chronic inflammation and systemic response, emphasizing the ability of flavonoids to exert antioxidant and anti-inflammatory effects by acting directly and through the modulation of transcription factors. It is concluded that new strategies for the prevention and treatment of urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, acute and chronic inflammatory processes may rely on the promising development of dosage forms of D. styracifolium with their subsequent preclinical and clinical trials.

19.
Adv Mater ; 36(18): e2311397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221651

RESUMEN

Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/diagnóstico , Animales , Ratones , Estrés Oxidativo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Humanos , Ácido Hipocloroso/metabolismo , Glutatión/metabolismo , Glutatión/química , Quempferoles/química , Quempferoles/farmacología , Riñón/diagnóstico por imagen , Riñón/metabolismo , Descubrimiento de Drogas
20.
Curr Drug Discov Technol ; 21(1): e251023222716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37921185

RESUMEN

BACKGROUND: The chance of contracting significant diseases increases due to an unhealthy and contemporary lifestyle. Chrysin is a flavonoid of the flavone class in numerous plants, including Passiflora and Pelargonium. Chrysin has long been used to treat a variety of illnesses. Chrysin, an essential flavonoid, has many pharmacological actions, including anticancer, antiviral, anti-inflammatory, anti-arthritic, depressive, hypolipidemic, hepatoprotective, and nephroprotective activity. PURPOSE: This explorative review was commenced to provide a holistic review of flavonoids confirming that Chrysin has a therapeutic potential on the liver and kidney and reduces the hepatotoxicity and nephrotoxicity induced by diverse toxicants, which can be helpful for the toxicologists, pharmacologists, and chemists to develop new safer pharmaceutical products with chrysin and other toxicants. STUDY DESIGN: The most relevant studies that were well-explained and fit the chosen topic best were picked. The achieved information was analyzed to determine the outcome by screening sources by title, abstract, and whole work. Between themselves, the writers decided on the studies to be considered. The necessary details were systematically organized into titles and subtitles and compressively discussed. METHOD: The information presented in this review is obtained using targeted searches on several online platforms, including Google Scholar, Scifinder, PubMed, Science Direct, ACS publications, and Wiley Online Library. The works were chosen based on the inclusion criteria agreed upon by all authors. RESULTS: Chrysin is a promising bioactive flavonoid with significant health benefits, and its synthetic replacements are being utilized as pharmaceuticals to treat various diseases. Findings revealed that Chrysin exhibits hepatoprotective actions against several hepatotoxicants like 2,3,7,8 tetrachlorodibenzo- p-dioxin, carbon tetrachloride (CCl4), cisplatin, and others by lowering the levels of liver toxicity biomarkers and enhancing antioxidant levels. Additionally, chrysin has potential nephroprotective properties against various nephrotoxicants, like Cisplatin, Doxorubicin, Paracetamol, Gentamicin, Streptazosin, and others by dropping kidney toxicity marker levels, reducing oxidative stress, and improving the antioxidant level. CONCLUSION: According to this revised study, chrysin is a promising phytoconstituent that can be utilized as an alternate treatment for various medications that cause hepatotoxicity and nephrotoxicity. With active chrysin, several dosage forms targeting the liver and kidneys can be formulated.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratas , Animales , Antioxidantes/farmacología , Cisplatino/farmacología , Ratas Wistar , Flavonoides/farmacología , Flavonoides/uso terapéutico , Riñón , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA