Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 13(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36295944

RESUMEN

The paper proposes a three-degrees-of-freedom flexible nano-positioning stage constructed from compliant flexures and piezoelectric thin-sheet actuators, featuring a compact size and fast dynamic responses, which can be extensively applied to the typical micro/nano-positioning applications. Meanwhile, the dynamic model of the flexible PZT nano-positioning with distributed parameter characteristics is established to distinctly reflect the piezoelectric-mechanical coupling relationship between the four flexible PZT actuators and the three outputs of such a system. Furthermore, the attitude decoupling control for the 3-DOF flexible piezoelectric nano-positioning stage is achieved by the Active Disturbance Rejection Control (ADRC) method to compensate for the positioning errors in the actual positioning process. After this, a real-time experimental apparatus with two Position-Sensitive Detectors (PSDs) is also proposed and fabricated to test the three outputs of the flexible piezoelectric thin-sheet (PZT-5A) nano-positioning stage and validate the effectiveness of the dynamic modeling method and attitude decoupling control in the piezoelectric nano-positioning stage ranges.

2.
Sci Prog ; 103(1): 36850419892190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31789110

RESUMEN

The existing nano-positioning stages are driven by the piezoelectric ceramics, which have features of high accuracy and resolution, but the traditional positioning stage could not meet the requirement of large working space because the displacement of the piezoelectric ceramics is only tens of microns. To solve the contradiction between high accuracy and large working space, a novel non-resonant piezoelectric linear actuator, which adopted the two parallel v-shaped stators as the double driving feet, was proposed, and both its working principle and structure were discussed in detail. The actuator was used to drive the positioning stage directly to obtain the performance of nano-positioning and large working stroke. The experiment results show that the resolution of the actuator is 0.015 µm, and its stable maximum motion speed is 17.4 mm/s, while the degree-of-freedom of step resolution of teach nano-positioning stage is 0.018 µm, 0.016 µm, and 0.3 µrad, respectively. Compared with the traditional positioning stage, the nano-positioning stage driven by the actuators directly also has excellent working stroke. The key performance of both high resolution and large working stroke of the nano-positioning stage was realized based on different motion modes of only one piezoelectric actuator.

3.
Micromachines (Basel) ; 10(9)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510068

RESUMEN

Nanotechnology applications demand high accuracy positioning systems. Therefore, in order to achieve sub-micrometer accuracy, positioning uncertainty contributions must be minimized by implementing precision positioning control strategies. The positioning control system accuracy must be analyzed and optimized, especially when the system is required to follow a predefined trajectory. In this line of research, this work studies the contribution of the trajectory definition errors to the final positioning uncertainty of a large-range 2D nanopositioning stage. The curve trajectory is defined by curve fitting using two methods: traditional CAD/CAM systems and novel algorithms for accurate curve fitting. This novel method has an interest in computer-aided geometric design and approximation theory, and allows high relative accuracy (HRA) in the computation of the representations of parametric curves while minimizing the numerical errors. It is verified that the HRA method offers better positioning accuracy than commonly used CAD/CAM methods when defining a trajectory by curve fitting: When fitting a curve by interpolation with the HRA method, fewer data points are required to achieve the precision requirements. Similarly, when fitting a curve by a least-squares approximation, for the same set of given data points, the HRA method is capable of obtaining an accurate approximation curve with fewer control points.

4.
J Mol Biol ; 431(20): 4116-4131, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31207238

RESUMEN

The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.


Asunto(s)
Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Imagen Individual de Molécula/métodos , Transcripción Genética , Archaea/enzimología , ADN de Archaea/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Factores de Transcripción/metabolismo
5.
J Synchrotron Radiat ; 25(Pt 5): 1362-1370, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179174

RESUMEN

The Frontier Microfocus Macromolecular Crystallography (FMX) beamline at the National Synchrotron Light Source II with its 1 µm beam size and photon flux of 3 × 1012 photons s-1 at a photon energy of 12.66 keV has reached unprecedented dose rates for a structural biology beamline. The high dose rate presents a great advantage for serial microcrystallography in cutting measurement time from hours to minutes. To provide the instrumentation basis for such measurements at the full flux of the FMX beamline, a high-speed, high-precision goniometer based on a unique XYZ piezo positioner has been designed and constructed. The piezo-based goniometer is able to achieve sub-100 nm raster-scanning precision at over 10 grid-linepairs s-1 frequency for fly scans of a 200 µm-wide raster. The performance of the scanner in both laboratory and serial crystallography measurements up to the maximum frame rate of 750 Hz of the Eiger 16M's 4M region-of-interest mode has been verified in this work. This unprecedented experimental speed significantly reduces serial-crystallography data collection time at synchrotrons, allowing utilization of the full brightness of the emerging synchrotron radiation facilities.

6.
Ultramicroscopy ; 181: 61-69, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28525802

RESUMEN

Within the last three decades Scanning Probe Microscopy has been developed to a powerful tool for measuring surfaces and their properties on an atomic scale such that users can be found nowadays not only in academia but also in industry. This development is still pushed further by researchers, who continuously exploit new possibilities of this technique, as well as companies that focus mainly on the usability. However, although imaging has become significantly easier, the time required for a safe approach (without unwanted tip-sample contact) can be very time consuming, especially if the microscope is not equipped or suited for the observation of the tip-sample distance with an additional optical microscope. Here we show that the measurement of the absolute tip-sample capacitance provides an ideal solution for a fast and reliable pre-approach. The absolute tip-sample capacitance shows a generic behavior as a function of the distance, even though we measured it on several completely different setups. Insight into this behavior is gained via an analytical and computational analysis, from which two additional advantages arise: the capacitance measurement can be applied for observing, analyzing, and fine-tuning of the approach motor, as well as for the determination of the (effective) tip radius. The latter provides important information about the sharpness of the measured tip and can be used not only to characterize new (freshly etched) tips but also for the determination of the degradation after a tip-sample contact/crash.

7.
Sensors (Basel) ; 17(2)2017 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-28134854

RESUMEN

Nano-positioning technology has been widely used in many fields, such as microelectronics, optical engineering, and micro manufacturing. This paper presents a one-dimensional (1D) nano-positioning system, adopting a piezoelectric ceramic (PZT) actuator and a multi-objective topological optimal structure. The combination of a nano-positioning stage and a feedback capacitive comb sensor has been achieved. In order to obtain better performance, a wedge-shaped structure is used to apply the precise pre-tension for the piezoelectric ceramics. Through finite element analysis and experimental verification, better static performance and smaller kinetic coupling are achieved. The output displacement of the system achieves a long-stroke of up to 14.7 µm and high-resolution of less than 3 nm. It provides a flexible and efficient way in the design and optimization of the nano-positioning system.

8.
Micromachines (Basel) ; 8(8)2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30400436

RESUMEN

A compact 2-DOF (two degrees of freedom) piezoelectric-driven platform for 3D cellular bio-assembly systems has been proposed based on "Z-shaped" flexure hinges. Multiple linear motions with high resolution both in x and y directions are achieved. The "Z-shaped" flexure hinges and the parallel-six-connecting-rods structure are utilized to obtain the lowest working stress while compared with other types of flexure hinges. In order to achieve the optimized structure, matrix-based compliance modeling (MCM) method and finite element method (FEM) are used to evaluate both the static and dynamic performances of the proposed 2-DOF piezoelectric-driven platform. Experimental results indicate that the maximum motion displacements for x-stage and y-stage are lx = 17.65 µm and ly = 15.45 µm, respectively. The step response time for x-stage and y-stage are tx = 1.7 ms and ty = 1.6 ms, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA