Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 492: 117107, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288838

RESUMEN

To investigate the difference in the development and neurobehavior between aluminum chloride (AlCl3) and nano-alumina (AlNPs) in adult zebrafish and the role of triggering receptor expressed on myeloid cells (TREM2) in this process. Zebrafish embryos were randomly administered with control, negative control, TREM2 knockdown, AlCl3, TREM2 knockdown + AlCl3, AlNPs, and TREM2 knockdown + AlNPs, wherein AlCl3 and AlNPs were 50 mg/L and TREM2 knockdown was achieved by microinjecting lentiviral-containing TREM2 inhibitors into the yolk sac. We assessed development, neurobehavior, histopathology, ultrastructural structure, neurotransmitters (AChE, DA), SOD, genes of TREM2 and neurodevelopment (α1-tubulin, syn2a, mbp), and AD-related proteins and genes. AlCl3 significantly lowered the malformation rate than AlNPs, and further increased rates of malformation and mortality following TREM2 knockdown. The locomotor ability, learning and memory were similar between AlCl3 and AlNPs. TREM2 deficiency further exacerbated their impairment in panic reflex, microglia decrease, and nerve fibers thickening and tangling. AlCl3, rather than AlNPs, significantly elevated AChE activity and p-tau content while decreasing TREM2 and syn2a levels than the control. TREM2 loss further aggravated impairment in the AChE and SOD activity, and psen1 and p-tau levels. Therefore, AlCl3 induces greater developmental toxicity but equivalent neurobehavior toxicity than AlNPs, while their toxicity was intensified by TREM2 deficiency.

2.
Aquat Toxicol ; 276: 107086, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39277994

RESUMEN

The study aims to investigate the effects of nano-alumina (AlNPs) on the early development and neurobehavior of zebrafish and the role of mTOR in this process. After embryos and grown-up larvae exposed to AlNPs from 0 to 200 µg/mL, we examined the development, neurobehavior, AlNPs content, and mTOR pathway genes. Moreover, embryos were randomly administered with control, negative control, mTOR knockdown, AlNPs, and mTOR knockdown + AlNPs, then examined for development, neurobehavior, oxidative stress, neurotransmitters, and development genes. As AlNPs increased, swimming speed and distance initially increased and then decreased; thigmotaxis and panic-avoidance reflex substantially decreased in the high-dose AlNPs group; aluminum and nanoparticles considerably accumulated in the 100 µg/mL AlNPs group; AlNPs at high dose decreased mTOR gene and protein levels, stimulating autophagy via increasing ULK1 and ULK2. mTOR knockdown exacerbated the harm to normal development rate, eye and body length, and neurobehavior induced by AlNPs through raising ROS, SOD, and ACH levels but decreasing AchE activity and development genes. Therefore, AlNPs suppress neurobehavior through downregulating mTOR, and mTOR knockdown further aggravates their early development and neurobehavior loss, suggesting mTOR could be a potential target for the toxicity of AlNPs.

3.
Materials (Basel) ; 17(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274669

RESUMEN

The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably improves binder viscosity by about 138% and reduces penetration by approximately 40.8% at 8% nanomaterial (NM) content, significantly boosting hardness and consistency. NS also enhances Marshall stability and decreases air voids, increasing the mix's durability. For moisture resistance, NS at 8% NM content elevates the Tensile Strength Ratio (TSR) to 91.0%, substantially surpassing the 80% standard. Similarly, NA and NT also show improved TSR values at 8% NM content, with 88.0% and 84.1%, respectively. Additionally, NS, NA, and NT reduce permanent deformation by 82%, 69%, and 64% at 10,000 cycles at 8% NM content, illustrating their effectiveness in mitigating pavement distress. Notably, while higher NM content generally results in better performance across most tests, the optimal NM content for fatigue resistance is 4% for NS and 6% for both NA and NT, reflecting their peak performance against various types of pavement distresses. These results highlight the significant advantages of nanoparticles in improving asphalt's mechanical properties, workability, stability, and durability. The study recommends further field validation to confirm these laboratory findings and ensure that enhancements translate into tangible improvements in real-world pavement performance and longevity.

4.
Sci Rep ; 14(1): 18417, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117707

RESUMEN

The study describes the successful development of a TiO2 ceramic substrate with a protective nano-Al2O3 coating using two different coating techniques: microwave combustion and polymeric methods. The coated ceramics demonstrate enhanced corrosion resistance compared to the uncoated substrate. The optimal TiO2 substrate was prepared by firing it at 1000 °C. This was done to give the desired physical properties of the TiO2 substrate for the coating procedures. Nano-Al2O3 powder was coated onto the surface of the TiO2 substrates. The TiO2 substrates with the Al2O3 coating were then calcined (heat-treated) at 800 and 1000 °C. The structures, morphology, phase composition, apparent porosity, bulk density, and compressive strength of the substrate and coated substrate were characterized. Upon firing at 1000 °C, it was discovered that the two phases of TiO2-rutile and anatase-combine in the substrate. Once the substrate has been coated with nano Al2O3 at 1000 °C, the anatase is transferred into rutile. When compared to the substrate, the coated substrate resulted in a decrease in porosity and an increase in strength. The efficiency of the ceramic metal nanoparticles Al2O3 as a good coating material to protect the TiO2 substrates against the effect of the corrosive medium 0.5 M solution of H2SO4 was measured by two methods: potentio-dynamic polarization (PDP) and the electrochemical impedance spectroscopy (EIS). The results indicated that the corrosion rate was decreased after the substrate coated with alumina from (67.71 to 16.30 C.R. mm/year) and the percentage of the inhibition efficiency recorded a high value reaching (78.56%). The surface morphology and composition after electrochemical measurements are investigated using SEM and EDX analysis. After conducting the corrosion tests and all the characterization, the results indicated that the coated TiO2 substrate prepared by the polymeric method at 800 °C displayed the best physical, mechanical, and corrosion-resistant behavior.

5.
Materials (Basel) ; 17(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203301

RESUMEN

In the last decades, nano-silica (NS), nano-alumina (NA), and nano-calcium oxide (NC) particles have been incorporated into cementitious materials, and it seems that each one of them contributes uniquely to the materials' properties. This research explores the influence of each nanomaterial on the fresh properties of cement pastes and their compressive strength evolution over one year. Low proportions (1.5% by weight) of nanomaterials were added to cement pastes, and their fresh properties, such as heat of hydration and X-ray diffraction patterns in the first hours, were analyzed. The compressive strength and open porosity were also measured long-term. The acceleration of hydration heat in NA-cement pastes is linked to enhanced hydration product formation at early ages. Among the tested nanomaterials, NA increased compressive strength by 10% at later ages. Although the fresh properties of NC-cement pastes remained unaffected, their open porosity decreased by 54% at 28 days. In contrast, the increase in heat of hydration in NS-cement pastes did not result in significant strength improvement. Based on these findings, NA was selected for ultra-high-performance cement (UHPC)-based material use. Its incorporation not only preserved the ultra-high-performance (UHP) properties but also provided additional benefits such as an increase in compressive strength under a CO2 atmosphere. Through detailed analysis, this research establishes that nano-alumina incorporation optimizes the microstructural development and compressive strength of ultra-high-performance cement-based systems, presenting a novel advancement in enhancing the mechanical properties and durability of these materials under various environmental conditions.

6.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1039906

RESUMEN

Background Nano-alumina (nano-Al2O3) is a widely utilized nanomaterial. Its impacts on the environment and biological systems have garnered significant attention. Zebrafish serves as a common model organism in scientific research due to its high homology with the human genome and is extensively used in toxicity studies. Objective To investigate the developmental toxicity and neurotoxicity of nano-Al2O3 exposure in zebrafish and the corresponding mechanisms of action. Method Zebrafish embryos at 6 h post-fertilization (hpf) were randomly assigned to a control group and five dose groups exposed to nano-Al2O3 at concentrations of 200, 400, 600, 800, and 1000 μg·mL−1, respectively. Thirty embryos were included in each group, and the culture medium was replaced every 24 h until 144 hpf. The hatching rates at 48 and 72 hpf and the cumulative malformation rates up to 144 hpf were calculated. At 144 hpf, a zebrafish behavior analyzer was used to record the movement trajectories of the zebrafish, and the total distance traveled and average speed were analyzed for each group. At 144 hpf, the development of dopaminergic neurons in transgenic zebrafish expressing vmat2: GFP, brain vessels in those expressing vegf: GFP, and central nervous system neurons in those expressing elavl3: EGFP were observed under a fluorescence microscope, and statistical analysis was conducted using Image Pro Plus. Real-time quantitative PCR was employed to detect the expression levels of neuron development-related genes (syn2α, gap43, dat), Lewy body formation-related gene (α-syn), and autophagy-related genes (pink1, parkin) at 144 hpf. Results Compared to the control group, the nano-Al2O3 exposed groups exhibited reduced hatching rates at 48 hpf and increased cumulative malformation rates (P<0.05), with phenomena such as delayed development, absence of the swim bladder, and body curvature. The autonomous behavioral tests revealed that the nano-Al2O3 exposed zebrafish showed a decrease in the total distance swum (P<0.001) and a significant reduction in average speed compared to the control group. The fluorescence observations indicated that the length of dopaminergic neurons in vmat2: GFP transgenic zebrafish was reduced in the nano-Al2O3 exposed groups (P<0.001). Additionally, vegf: GFP transgenic zebrafish exhibited a significant absence of brain vessels, while elavl3: EGFP transgenic zebrafish showed a weakened fluorescence intensity of central nervous system neurons (P<0.001) and a decreased length of these neurons (P<0.01). The real-time quantitative PCR analysis revealed that compared to the control group, the gene expression levels of α-syn, syn2α, dat, and gap43 were upregulated in the zebrafish exposed to nano-Al2O3 (except for the 400 μg·mL−1 exposure group) (P<0.01), while the expression levels of parkin were downregulated in the 600 and 800 μg·mL−1 nano-Al2O3 exposed groups, and the expression levels of pink1 were downregulated in all exposure groups except for the 200 μg·mL−1 group (P<0.05). Conclusion Exposure to nano-Al2O3 exhibits developmental toxicity in zebrafish larvae and induces Parkinsonism-like symptoms in zebrafish. The preliminary speculation of the mechanism suggests that it may be related to nano-Al2O3-induced mitochondrial autophagy impairment.

7.
J Hazard Mater ; 452: 131327, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37027917

RESUMEN

Municipal solid waste incineration (MSWI) fly ash has serious pollution. It needs to be solidification/stabilization (S/S) to sanitary landfill as quickly as possible. In order to achieve the objective, the early hydration properties of alkali-activated MSWI fly ash solidified body were investigated in this paper. Meanwhile, nano-alumina was utilized as an agent to optimize the early performance. Therefore, the mechanical properties, environmental safety, hydration process and mechanisms of heavy metals S/S were explored. The results showed that after adding nano-alumina, the leaching concentration of Pb and Zn in solidified bodies after 3 d curing was significantly reduced by 49.7-63% and 65.8-76.1%, respectively, and the compressive strength was enhanced by 10.2-55.9%. Nano-alumina improved the hydration process, and the predominant hydration products in solidified bodies were C-S-H gels and C-A-S-H gels. Meanwhile, nano-alumina could obviously increase the most stable chemical speciation (residual state) ratio of heavy metals in solidified bodies. Pore structure data showed that, due to the filling effect and pozzolanic effect of nano-alumina, the porosity has been reduced and the ratio of harmless pore structure has been increased. Therefore, it can be concluded that solidified bodies mainly solidify MSWI fly ash by physical adsorption, physical encapsulation and chemical bonding.

8.
Environ Sci Pollut Res Int ; 30(12): 34612-34622, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515873

RESUMEN

The need for non-renewable fuels is steadily decreasing with their ever-increasing cost and air pollution. As a result, renewable fuel such as biofuel is used as a fuel substitute for diesel engines. The effects of magnesia and alumina nanoparticles on the exhaust pollutants and performance of a naturally aspirated, 17.5 compression ratio, 4-stroke CI engine operating on spirulina microalgae biodiesel, and its amalgams were explored. Oxides of nitrogen, thermal efficiency, carbon dioxide, fuel consumption, and hydrocarbons were among the attributes studied. Test outcomes revealed that the doping of magnesia and alumina nano additives in spirulina biodiesel resulted in increased thermal efficiency and oxides of nitrogen, succeeded by a decrease in fuel consumption and hydrocarbons, at all loads, compared to amalgams without nano additives. At maximum load, the increase in thermal efficiency and oxides of nitrogen was found to be 1.15 and 1.46% with nano magnesia-doped blends when compared to corresponding spirulina blends. On the other, hand when nano alumina is doped in spirulina amalgams, the increase in thermal efficiency and oxides of nitrogen was observed to be 0.82 and 0.97%, respectively. Similarly, fuel consumption and hydrocarbons were reduced by 1.02 and 9.52%, 1.014, and 7.66%%, respectively, for magnesia and alumina-enriched biodiesel, contrasted to that of biodiesel blends.


Asunto(s)
Microalgas , Spirulina , Biocombustibles , Óxidos de Nitrógeno/análisis , Gasolina , Óxido de Aluminio , Óxido de Magnesio , Emisiones de Vehículos , Hidrocarburos , Monóxido de Carbono/análisis
9.
Materials (Basel) ; 15(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431540

RESUMEN

The main goal of the present work was to synthesize a composite consisting of h-BN particles coated with a γ-Al2O3 nanolayer. A method was proposed for applying nanocrystalline γ-Al2O3 to h-BN particles using a sol-gel technique, which ensures the chemical homogeneity of the composite at the nano level. It has been determined that during crystallization on the h-BN surface, the proportion of spinel in alumina decreases from 40 wt.% in pure γ-Al2O3 to 30 wt.% as a result of the involvement of the B3+ ions from the surface nitride monolayers into the transition complex. For comparison, nano-alumina was synthesized from the same sol under the same conditions as the composite. The characterization of the obtained nanostructured powders was carried out using TEM and XRD. A mechanism is proposed for the formation of a nanostructured γ-Al2O3@h-BN composite during the interaction of Al-containing sol and h-BN suspension in aqueous organic media. The resulting composite is a promising model of powdered raw materials for the development of fine-grained ceramic materials for a wide range of applications.

10.
Materials (Basel) ; 15(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36431604

RESUMEN

Ultra-high-performance concrete (UHPC) has promising applications in civil engineering. However, the elastic modulus of UHPC is relatively low compared with its compressive strength, which may result in insufficient stiffness in service. This work was carried out to explore the feasibility of producing UHPC with high elastic modulus by nano-Al2O3 (NA). Based on particle densely packing theory, the initial mixture of UHPC was designed via the modified Andreasen and Andersen model. An experimental investigation was conducted to systematically examine the effects of NA on different properties of UHPC, including its fluidity, mechanical properties, durability, and microstructure. It was found that: (1) Compared with UHPC without NA, the flexural strength, compressive strength, and elastic modulus of UHPC were improved by 7.38-16.87%, 4.08-20.58%, and 2.89-14.08%, respectively, because of the incorporation of NA; (2) the addition of NA had a prohibiting impact on the threshold pore diameter and porosity of UHPC, which suggested that NA could be conducive to its pore structure; (3) the incorporation of NA led to a decline of 2.9-11.76% in the dry shrinkage of UHPC, which suggested that incorporating NA in a proper amount could reduce the risk of cracking and alleviate the dry shrinkage of UHPC; (4) the optimal amount of NA in UHPC was 1.0%, considering the effects of NA on workability, mechanical properties, microstructure, and the durability of UHPC.

11.
Polymers (Basel) ; 14(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015576

RESUMEN

The performance improvement of advanced electronic packaging material is an important topic to meet the stringent demands of modern semiconductor devices. This paper studies the incorporation of nano-alumina powder and thermoplastic elastomer (TPE) into thermoplastic polystyrene matrix to tune the thermal and mechanical properties after injection molding process. In the sample preparation, acetone was employed as a solvent to avoid the powder escape into surrounding during the mechanical mixing in a twin-screw mixer. The pressure and shear force were able to mix the composite with good uniformity in compositions. The samples with different compositions were fabricated using injection molding. The measured results showed that adding 5 wt.% of TPE into the simple polystyrene was able to raise the melt flow index from 12.3 to 13.4 g/10 min while the thermal decomposition temperature remained nearly unchanged. Moreover, the addition of small amount of nano-alumina powder could quickly improve the mechanical property by raising its storage modulus. For example, the addition of 3 wt.% of nano-alumina powder had an increase of 7.3% in storage modulus. Over doping of nano-alumina powder in the composite, such as 10 wt.%, on the other hand, lowered the storage modulus from 2404 MPa to 2069 MPa. The experimental study demonstrated that the tuning in the polystyrene's thermal and mechanical properties is feasible by composition modification with nano-alumina powder and TPE. The better concentration of the additives should be determined according to the specific applications.

12.
J Trace Elem Med Biol ; 73: 127003, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35660562

RESUMEN

BACKGROUND: As an emerging nanomaterial, nano-alumina is widely used in chemical engineering, food and medicine due to its special physical and chemical properties, and its potential health hazards have attracted attention. OBJECTIVE: Aim of this study is to understanding the effect and possible mechanism of nano-alumina on cognitive function in mice. METHODS: Male healthy ICR mice were randomly assigned and given nasal drops of saline, nano-alumina (different doses) and micro-alumina for 30 days, respectively. Morris water maze test, step down test and open field test were used to detect learning and memory ability. Blood brain permeability was observed by immunofluorescence staining and lanthanum nitrate tracing, histopathological abnormalities in mice hippocampus was observed by thionine staining, the final determination of oxidative stress level in brain tissue was measured by using oxidative stress index detection kit and the level of LC3-Ⅱ and Caspase-3, 8, 9 proteins were detected by western blot. RESULTS: In the cerebral cortex of mice exposed to nano-alumina particles, lanthanum nitrate particles adhered to vascular endothelial cells, and the expression of ZO-1 and Occuldin decreased and morphology was disordered; most neurons in hippocampus CA3 region showed balloon-like swelling and degeneration, nucleoli disappeared and apical dendrites broke; mice exposed to nano-alumina, the escape latency in Morris water maze increased compared with the control group(P < 0.05),and the residence time in the original platform quadrant shortened significantly(P < 0.05);the platform latency was significantly shortened and the number of errors increased in the step down test compared with the control group; the residence time in the center of mice the nano-alumina treated was significantly increased in open field test (P < 0.05). CONCLUSION: The nano-alumina particles could be transported into the central nervous system via blood-brain barrier and olfactory bulb, impair learning and memory function in mice, which is more serious than the micro-alumina particles. The apoptosis of mice neurons caused by nano-alumina particles maybe due to the mixed neurotoxic effect of oxidative stress and the elemental toxicity of aluminum itself.


Asunto(s)
Óxido de Aluminio , Disfunción Cognitiva , Animales , Corteza Cerebral , Células Endoteliales , Hipocampo , Masculino , Ratones , Ratones Endogámicos ICR
13.
Materials (Basel) ; 14(16)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34442964

RESUMEN

This article presents the effect of aluminum nanoxide on the physical, strength and structural properties of cement mortars. The mortars were made with a water to binder ratio of 0.5 and a binder to sand ratio of 1:3; and 1%, 2%, 3% and 4% of aluminum nanoxide, respectively, were used by cement weight. First, the consistency of nano-Al2O3 mortars was tested. Next, after 7 days of sample maturation, compressive and flexural strength tests were carried out and continued after 28 and 90 days of the maturing of the mortars. The best test results were obtained for mortars with the addition of 1% aluminum nanoxide, the compressive strength of which increased by about 20% compared to the reference mortars. The water absorption and rising capillary tests as well as SEM observations were also performed. Another aim of the article is the analysis of the fracture morphology of nano-Al2O3 modified mortars. It is assumed that a change of the microstructure of the hardened cement paste affects not only the properties of the modified mortars but also the roughness of the fractures formed as a result of the destruction of the surface. Roughness analysis was performed with methods and tools relevant to fractal geometry. The fractographic analysis showed a significant influence of the modifier in the form of nano-Al2O3 on the values of fractal dimensions. The lowest values of the fractal dimension D and the fractal dimension of the DRP roughness profile of the fracture surface profile lines were obtained for nano-Al2O3 modified mortars. The conducted research proved the fractal dimension to be a parameter extremely sensitive to modifications of mortar composition as well as changes related to the maturation time.

14.
Environ Sci Pollut Res Int ; 27(21): 26367-26384, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32363464

RESUMEN

Removal of arsenic from water is of utmost priorities on a global scenario due to its ill effects. Therefore, in the present study, aluminium oxide nano-particles (nano-alumina) were synthesised via solution combustion method, which is self-propagating and eco-friendly in nature. Synthesised nano-alumina was further employed for arsenate removal from water. Usually, pre-oxidation of arsenite is performed for better removal of arsenic in its pentavalent form. Thus, arsenate removal as a function of influencing parameters such as initial concentration, dose, pH, temperature, and competing anions was the prime objective of the present study. The speciation analysis showed that H2AsO4- and HAsO42- were co-existing anions between pH 6 and 8, as a result of which higher removal was observed. Freundlich isotherm model was well suited for data on adsorption. At optimal temperature of 298 K, maximum monolayer adsorption capacity was found as 1401.90 µg/g. The kinetic data showed film diffusion step was the controlling mechanism. In addition, competing anions like nitrate, bicarbonate, and chloride had no major effect on arsenate removal efficiency, while phosphate and sulphate significantly reduced the removal efficiency. The negative values of thermodynamic parameters ΔH° (- 23.15 kJ/mol) established the exothermic nature of adsorption, whereas the negative values of ΔG° (- 7.05, - 6.51, - 5.97, and - 5.43 kJ/mol at 298, 308, 318, and 328 K respectively) indicated the spontaneous nature of the process. The best-fitted isotherm was used to design a batch adsorber to estimate the required amount of aluminium oxide nano-particles for achieving the desired equilibrium arsenate concentration. Nano-alumina was also applied to treat the collected arsenic-contaminated groundwater from actual field. Experimental data were used to develop a neural network-based model for the effective prediction of removal efficiency without carrying out any extra experimentation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Óxido de Aluminio , Arseniatos , Concentración de Iones de Hidrógeno , Cinética , Redes Neurales de la Computación , Termodinámica
15.
Materials (Basel) ; 12(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835348

RESUMEN

This article selects studies on the preparation of fluorinated polyurethane-nano-alumina composite coating materials, and analyzes the anti-wear, water resistantance, and surface microstructure. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) shows that the polyurethane synthesized in this study does not contain hydrophilic -CH2OH groups. The cavitation wear test depicts that the actual cavitation amount C of the Al2O3-FPU (4) (fluorinated polyurethane) coating is 0.9035 × 10-3 kg, and the anti-wear ability increases by 61.9% compared with FPU-0.5. The water-resistant test shows that the contact angle of water droplets on the surface of the coating increase from 95.3° of FPU-0.5 to 123.1° of Al2O3-FPU (4), and the water absorption decreases from 2.52% to 1.04%. Scanning electron microscopy (SEM) observation confirms that alumina particles can protrude on the coating surface and resist strong wear, while the C-F chain with high bond energy at the near-surface exhibits high strength and water resistance, which prevents wear from spreading deep into the coating. Differential scanning calorimetry (DSC) results show that the Tg(HS) value of the hard segment phase decreases with higher external force. Notably, when the coating is subjected to erosion, which enhances the crystallinity of the hard segment phase, the tensile strength of the hard segment phase of the coating surface is improved, which supports the wear resistance. Herein, we show that the addition of nano-alumina to fluorinated polyurethanes can control high water and abrasion resistance.

16.
Environ Pollut ; 248: 332-338, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30802747

RESUMEN

The decontamination of U(VI) on graphene oxide/nano-alumina (GO/Al2O3) composites were investigated by batch, XRD, FT-IR and XPS techniques. The characterization results showed that GO/Al2O3 composites presented a variety of oxygen-containing functional groups, which provided the more surface reactive sites. The batch experiments indicated that sorption equilibrium of U(VI) on GO/Al2O3 composites was achieved within 30 min, and the maximum sorption capacity derived from Langmuir model was 142.8 mg/g at pH 6.5. In addition, the slight decrease of sorption capacity was observed even after fifth recycling times. These results indicated that GO/Al2O3 composites displayed the fast sorption rate, high sorption capacity and good regeneration performance. No effect of ionic strength revealed the inner-sphere surface complexation of U(VI) on GO/Al2O3 composites. FT-IR and XPS analysis demonstrated that the high adsorption of U(VI) on GO/Al2O3 was attributed to the various oxygen-bearing functional groups. In addition, the nano Al2O3 was transferred to amorphous AlO(OH) mineral phase by XRD pattern, which provided the additional reactive sorption sites. These observations indicated that GO-based composites can be regarded as a promising adsorbent for immobilization and pre-concentration of U(VI) from aqueous solutions in the environmental remediation.


Asunto(s)
Descontaminación/métodos , Restauración y Remediación Ambiental/métodos , Grafito/química , Uranio/química , Contaminantes Radiactivos del Agua/química , Adsorción , Óxido de Aluminio , Concentración Osmolar , Óxidos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
17.
Environ Sci Pollut Res Int ; 26(2): 1595-1605, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30446911

RESUMEN

This study mainly focuses on the preparation, characterization, and sorption performance for Cu(II) and Zn(II) by using nano-alumina material (NA) synthesized through the sol-gel method. The SEM, EDS, FT-IR, and XRD analysis methods were implemented to identify the micromorphology and crystal structure of the synthesized NA absorbent and its structure after the adsorbing procedure. The effect of effective variables including various absorbent dose, contact time, initial ion concentration, and temperature on the removal of Cu(II) and Zn(II) from aqueous solution by using NA was investigated through a single factor experiment. Kinetic studies indicated that adsorption of copper and zinc ions by NA was chemical adsorption. The adsorption isotherm data were fitted by Langmuir (R2: 0.919, 0.914), Freundlich (R2: 0.983, 0.993), and Temkin (R2: 0.876, 0.863) isotherms, indicating that copper and zinc ions were easily adsorbed by NA with maximum adsorption capacities of 87.7 and 77.5 mg/g for Cu2+ and Zn2+, respectively. Thermodynamic parameters indicated that the adsorption of Cu2+ was spontaneous(G<0) and the adsorption of Zn2+ might not be spontaneous (G > 0) by NA. Graphical abstract ᅟ.


Asunto(s)
Óxido de Aluminio/química , Cobre/química , Nanoestructuras/química , Zinc/química , Adsorción , Cobre/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Termodinámica , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Difracción de Rayos X , Zinc/aislamiento & purificación
18.
J Environ Manage ; 212: 278-291, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29448182

RESUMEN

The numerous ecological problems caused by the accumulation of secondary aluminum dross (SAD) as a hazardous waste generated in aluminum castings have necessitated a need for a sustainable recycling solution. This study proposes a novel and green leaching-based process for recovery of nano-alumina as a highly valuable material from SAD. The leaching phase was performed at atmospheric pressure and low temperature. To obtain optimum conditions for the recovery process, the dissolution kinetics and mechanism of SAD in hydrochloric acid were initially studied under a given liquid-to-solid ratio of 20 ml/g, various reaction temperatures and times. It was found that the dissolution of SAD in HCl was controlled by layer diffusion with an apparent activation energy of around 10.49 kJ/mol. Alumina in the form of a high purity nanostructured powder from SAD was then recovered under optimum conditions of 85 °C, acid concentration of 5 mol/l, and reaction time of 120 min by the proposed process. Characterization of nano-alumina was performed using X-ray diffractometry (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), and transmission electron microscopy (TEM) techniques. The results revealed that the as-produced alumina had a nano-crystalline structure, having the crystal size of 15.90 nm and consisting mainly of gamma phase. The microstructural studies disclosed the aggregations of rounded-corner shaped particles. Also, wet chemical analysis showed a purity of more than 98% for the produced alumina.


Asunto(s)
Aluminio , Nanoestructuras , Reciclaje , Óxido de Aluminio , Residuos Peligrosos , Microscopía Electrónica de Rastreo , Difracción de Rayos X
19.
J Environ Manage ; 183: 121-125, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27589920

RESUMEN

In this work, nanoscale single crystalline γ- and α-alumina powders have been successfully prepared from aluminum foil waste precursor via co-precipitation method using NH4OH as a precipitant. The obtained gel after co-precipitation treatment, was calcined at different temperatures (500,700, 900, 1050, 1100, 1300 and 1500 °C) and the products were characterized by XRD, FTIR and HRTEM. The results revealed that nano-γ-Al2O3 was fully transformed to nanometer-sized α-Al2O3 (36-200 nm) after annealing at temperatures as low as 1100 °C.The thermally preheated powder at 500 °C was further pressed under 95 MPa by the uniaxial press and the obtained bodies were found to have98.82% of the theoretical density, 1.18% porosity and 708 MPa compressive strength, when sintered at temperatures as low as 1600 °C without using any sintering aid. These excellent results proved that this work will contribute to finding a commercial source for preparing sub 100 nm α-alumina through the secondary resources management and even more so to synthesizing strong α-Al2O3 bodies which are promising in terms of their structure and compression. The α-Al2O3 bodies synthesized by the present work could be used as a feedstock for fabrication of various kinds of functional and structural materials that are extensively used in high tech.


Asunto(s)
Óxido de Aluminio/química , Aluminio , Cerámica/química , Residuos , Frío , Calor , Microscopía Electrónica de Transmisión , Porosidad , Polvos , Eliminación de Residuos/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
20.
J Food Sci Technol ; 53(4): 1948-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27413221

RESUMEN

In this work, nano-alumina was utilized as a reinforcing agent for guar gum, with an aim to improve its performance properties; especially, mechanical and barrier i.e. water vapor transmission rate (WVTR). Films were prepared by the process of solution casting. Concentration of nano-alumina was varied as 0, 1, 3, 5 and 7 parts per hundred parts of resin (phr) in guar gum. The prepared pristine and guar gum/alumina nano-composite films were characterized for mechanical, puncture, x-ray diffraction, barrier, rheological and morphological properties. Tensile strength, Young's modulus, puncture strength, viscosity and crystallinity increased; whereas, WVTR, elongation at break (%) and damping factor decreased with increased concentration of nano-alumina in guar gum. However, optimized improvement in the performance properties were determined for 5 phr nano-alumina loaded guar gum polymer matrix, attributed to its better dispersion and interaction into the guar gum polymer chains due to the hydrophilic nature of both the materials. Above 5 phr concentration nano-alumina started forming aggregates, as evident from scanning electron microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA