Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Clin Nutr ; 42(12): 2422-2433, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871483

RESUMEN

BACKGROUND AND AIMS: Parenteral nutrition (PN) rich in n-6 and n-3 long-chain fatty acids is used in clinical practice for nourishing patients who are unable to receive adequate nutrition through their digestive systems. In this study, we compare the effect on inflammation of the commonly used lipid emulsions Omegaven (n-3-rich) and Intralipid (n-6-rich) in human peripheral blood mononuclear cells (PBMCs). METHODS: PBMCs were treated with different doses of n-3-rich Omegaven and n-6-rich Intralipid and the immune cells were characterized by flow cytometry. RESULTS: We show that incubation of PBMCs with n-3-rich Omegaven leads to an increase in expression of CD1d and CD86 in CD14+monocytes. At the same time, an increased number of NKT cells expressing cytotoxic T cell antigen 4 is observed, suggesting immunological synapse formation. Both CD14+monocytes and NKT cells showed an increase in IL-10 production and a reduction in the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-4, which led to an increase in the number of FOXP3+T regulatory cells. In addition, we show that n-3-rich Omegaven reduces the expression of TNFα, IFNγ and IL-4 in CD4+T and CD8+T cells independent of the presented interaction between CD14+monocytes and NKT cells. The described mechanism of n-3 rich lipid emulsions was confirmed in PBMCs from patients with inflammatory bowel disease but not in colorectal cancer patients which seem to lack the interaction between CD14+monocytes and NKT cells. CONCLUSIONS: These results show a mechanism for the beneficial effect of the n-3-rich Omegaven in patients with inflammatory conditions but questions its use in patients with cancer. Hence, our results may assist in choosing the best lipid emulsion for patients who require PN.


Asunto(s)
Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos Omega-3/farmacología , Emulsiones/farmacología , Interleucina-4 , Leucocitos Mononucleares/metabolismo , Nutrición Parenteral/métodos , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios
2.
Nutrients ; 15(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686888

RESUMEN

Recently, the prevalence of atopic dermatitis has increased drastically, especially in urban populations. This multifactorial skin disease is caused by complex interactions between various factors including genetics, environment, lifestyle, and diet. In eczema, apart from using an elimination diet, the adequate content of fatty acids from foods (saturated, monounsaturated, and polyunsaturated fatty acids) plays an important role as an immunomodulatory agent. Different aspects regarding atopic dermatitis include connections between lipid metabolism in atopic dermatitis, with the importance of the MUFA levels, as well as of the omega-6/omega-3 balance that affects the formation of long-chain (C20 eicosanoic and C22 docosaenoic) fatty acids and bioactive lipids from them (such as prostaglandins). Impair/repair of the functioning of epidermal barrier is influenced by these fatty acid levels. The purpose of this review is to drive attention to membrane fatty acid composition and its involvement as the target of fatty acid supplementation. The membrane-targeted strategy indicates the future direction for dermatological research regarding the use of nutritional synergies, in particular using red blood cell fatty acid profiles as a tool for checking the effects of supplementations to reach the target and influence the inflammatory/anti-inflammatory balance of lipid mediators. This knowledge gives the opportunity to develop personalized strategies to create a healthy balance by nutrition with an anti-inflammatory outcome in skin disorders.


Asunto(s)
Dermatitis Atópica , Ácidos Grasos Omega-3 , Humanos , Ácidos Grasos , Dermatitis Atópica/terapia , Estado Nutricional , Prostaglandinas , Alimentos
3.
Anim Nutr ; 14: 20-31, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37234947

RESUMEN

An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.

4.
Crit Rev Food Sci Nutr ; 63(14): 2247-2259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36939291

RESUMEN

OBJECTIVES: This systematic review and meta-analysis aimed at summarizing earlier findings on the association of n-6 PUFAs levels in diets or blood with blood pressure. METHODS: PubMed/Medline, Scopus, and Web of Science were searched for observational studies. Publications with data on the risk of hypertension, or the correlation between n-6 PUFAs or mean values of serum n-6 PUFAs levels in normotensive and hypertensive were included. RESULTS: Twenty-two studies (16 cross-sectional studies, 5 cohorts and one case-control) were eligible. Combining 14 extracted effect sizes showed that higher circulatory/dietary n-6 PUFAs tended to be associated with 10% lower risk of HTN (95% CI: 0.81, 1.00), whereas combining 23 effect sizes illustrated no difference in circulatory/dietary n-6 PUFAs mean levels between normotensive and hypertensive subjects. According to subgroup analysis based on fatty acid types, total n-6 PUFAs (OR = 0.82, 95% CI: 0.70, 0.97) and linoleic acid (OR = 0.56, 95% CI: 0.39, 0.82) were inversely related to the risk of HTN. Circulatory/dietary n-6 PUFAs were correlated neither with systolic nor with diastolic blood pressure. CONCLUSIONS: Higher circulatory/dietary n-6 PUFAs tend to be associated with lower odds of HTN. Particularly, total n-6 PUFAs and linoleic acid were associated with lower risk of HTN.


Asunto(s)
Ácidos Grasos Omega-3 , Hipertensión , Humanos , Presión Sanguínea , Ácido Linoleico , Estudios Transversales , Ácidos Grasos Insaturados
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768438

RESUMEN

Dihomo-γ-linolenic acid (DGLA) has emerged as a significant molecule differentiating healthy and inflamed tissues. Its position at a pivotal point of metabolic pathways leading to anti-inflammatory derivatives or via arachidonic acid (ARA) to pro-inflammatory lipid mediators makes this n-6 polyunsaturated fatty acid (PUFA) an intriguing research subject. The balance of ARA to DGLA is probably a critical factor affecting inflammatory processes in the body. The aim of this narrative review was to examine the potential roles of DGLA and related n-6 PUFAs in inflammatory conditions, such as obesity-associated disorders, rheumatoid arthritis, atopic dermatitis, asthma, cancers, and diseases of the gastrointestinal tract. DGLA can be produced by cultured fungi or be obtained via endogenous conversion from γ-linolenic acid (GLA)-rich vegetable oils. Several disease states are characterized by abnormally low DGLA levels in the body, while others can feature elevated levels. A defect in the activity of ∆6-desaturase and/or ∆5-desaturase may be one factor in the initiation and progression of these conditions. The potential of GLA and DGLA administrations as curative or ameliorating therapies in inflammatory conditions and malignancies appears modest at best. Manipulations with ∆6- and ∆5-desaturase inhibitors or combinations of long-chain PUFA supplements with n-3 PUFAs could provide a way to modify the body's DGLA and ARA production and the concentrations of their pro- and anti-inflammatory mediators. However, clinical data remain scarce and further well-designed studies should be actively promoted.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico , Ácidos Grasos Omega-6 , Inflamación , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ácido Araquidónico , Ácido Graso Desaturasas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedad Crónica
6.
Artículo en Inglés | MEDLINE | ID: mdl-36645979

RESUMEN

INTRODUCTION: Oxylipins form endogenously via the oxygenation of long-chain polyunsaturated fatty acids (LC PUFA). Several oxylipins are highly bioactive molecules and are believed to be key mediators of LC PUFA metabolism in the body. However, little is known in relation to whether oxylipins mediate alterations in skeletal muscle mass and function. The objective of this study was to determine if a relationship exists between the oxylipin profile and skeletal muscle biology in healthy older adults at risk of sarcopenia and determine if this changes in response to LC n-3 PUFA supplementation. MATERIALS AND METHODS: This exploratory study investigated the baseline correlations between LC n-3, n-6 and n-9 PUFA-derived oxylipins and markers of muscle biology. For this, the concentration of 79 free (i.e., non-esterified) oxylipins was quantified in human plasma by liquid chromatography-mass spectrometry (LC-MS) and retrospectively correlated to phenotypic outcomes obtained pre-intervention from the NUTRIMAL study (n = 49). After examining the baseline relationship, the potential effect of supplementation (LC n-3 PUFA or an isoenergetic control made of high-oleic sunflower and corn oil) was evaluated by correlating the change in oxylipins concentration and the change in markers of skeletal muscle biology. The relationship between oxylipins pre- and post-intervention and their parent PUFA were also examined. RESULTS: At baseline, the hydroxy product of mead acid (n-9 PUFA), 5-HETrE, was negatively correlated to the phenotypic parameters appendicular lean mass index (ALMI) (p = 0.003, r=-0.41), skeletal muscle mass index (SMMI) (p = 0.001, r=-0.46), handgrip strength (HGS) (p<0.001, r = 0.48) and isometric knee extension (p<0.001, r=-0.48). Likewise, LC n-6 PUFA hydroxy­PUFA were negatively correlated to HGS (i.e., 12-HETrE, p = 0.002, r=-0.42, and 5- and 11-HETE, p = 0.006, r=-0.47 and p<0.001, r=-0.50 respectively), single leg stand time (i.e., 12-HETrE, p = 0.006, r=-0.39 and 16-HETE, p = 0.002, r=-0.43), and five-time-sit-to-stand test (FTST) performance (16-HETE, p = 0.006, r = 0.39), and positively correlated to gait speed (i.e., 12-HETrE, p = 0.007, r = 0.38 and 16-HETE, p = 0.006, r = 0.39). LC n-3 PUFA supplementation increased eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived oxylipins and reduced n-6 PUFA derived oxylipins. Parameters of skeletal muscle mass and strength were not significantly altered in either LC n-3 PUFA or placebo groups. Changes in plasma oxylipins concentrations were closely related to changes in their parent PUFA, assessed in the erythrocyte membrane, but were not associated with any changes in skeletal muscle parameters. DISCUSSION AND CONCLUSION: At baseline, the status n-9 (5-HETrE) and n-6 PUFA derivates [12-HETrE, and 5-, 11- and 16-HETE], but not n-3 PUFA derived oxylipins, were associated with poor skeletal muscle health parameters (i.e., mass and strength). However, these correlations were no longer present when correlating relative changes from pre to post timepoints. An independent cohort validation is needed to explore baseline correlations further. Further research is warranted to assess other biological mechanisms by which LC n-3 PUFA might affect muscle biology.


Asunto(s)
Ácidos Grasos Omega-3 , Sarcopenia , Humanos , Anciano , Oxilipinas , Fuerza de la Mano , Estudios Retrospectivos , Ácidos Grasos , Ácidos Docosahexaenoicos , Suplementos Dietéticos , Músculo Esquelético/metabolismo , Biología
7.
Front Nutr ; 9: 1030712, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386908

RESUMEN

Linseed oil, an important source of dietary α-linolenic acid, is used to provide meat enriched in n-3 PUFA. We investigated the effects of dietary linseed oil (0, 0.5, 1, and 2%) on growth performance, meat quality, tissue fatty acid (FA), and transcriptome profiles in ducks. The result showed that dietary linseed oil had no effect on growth performance. Increasing dietary linseed oil enrichment raised n-3 PUFA and linoleic acid (LA) levels in both the liver and breast muscle, but decreased dihomo-gamma-linolenic acid (DGLA) and arachidonic acid (ARA) levels in the liver. The liver n-3 PUFA content was negatively correlated with duck body weight. Transcriptome analysis showed that dietary linseed oil caused hepatic changes in genes (SCD, FADS1, FADS2, and ACOT6) related to the biosynthesis of unsaturated fatty acids. Besides, dietary linseed oil also affected the expression of genes related to PUFAs and downstream metabolites (such as linoleic acid, steroid hormone, progesterone, etc.) metabolic pathways in both liver and breast muscle. Key genes involved in PUFA synthesis and transport pathways were examined by RT-qPCR, and the results verified that hepatic expression levels of FADS1 and FADS2 decreased, and those of FABP4 and FABP5 increased when 2% linseed oil was added. CD36 expression level increased in breast muscle when 2% linseed oil was added. Thus, 2% dietary linseed oil supplementation produces n-3 PUFA-enriched duck products by regulating the PUFA metabolic pathways, which could be advantageous for health-conscious consumers.

8.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142150

RESUMEN

In recent decades, fertility traits in humans as well as in farm animals have decreased worldwide. As such, it is imperative to know more about the genetics and physiology of increased or high fertility. However, most of the current animal models with reproductive phenotypes describe lower fertility or even infertility (around 99%). The "Dummerstorf high-fertility lines" (FL1 and FL2) are two unique mouse lines selected for higher reproductive performances, more specifically for higher number of pups per litter. We recently described how those superfertile mice managed to increase their reproductive phenotype by doubling the ovulation rate and consequently the litter size compared to the unselected mice of the same founder population. FLs show an unusual estrous cycle length and atypical levels of hormones that link reproduction and metabolism, such as insulin in FL1 and leptin in FL2. Moreover, we described that their higher ovulation rate is mostly due to a higher quality of their oocytes rather than their sheer quantity, as they are characterized by a higher quantity of high-quality oocytes in antral follicles, but the quantity of follicles per ovary is not dissimilar compared to the control. In the present study, we aimed to analyze the lipid composition of the fertility lines from plasma to the gonads, as they can connect the higher reproductive performances with their metabolic atypicalities. As such, we analyzed the fat content of FLs and fatty acid composition in plasma, liver, fat, oocytes of different quality, and granulosa cells. We demonstrated that those mice show higher body weight and increased body fat content, but at the same time, they manage to decrease the lipid content in the ovarian fat compared to the abdominal fat, which could contribute to explaining their ovarian quality. In addition, we illustrate the differences in fatty acid composition in those tissues, especially a lower level of saturated fatty acids in plasma and a different lipid microenvironment of the ovary. Our ongoing and future research may be informative for farm animal biology as well as human reproductive medicine, mostly with cases that present characteristics of lower fertility that could be reversed following the way-of-managing of Dummerstorf high-fertility lines.


Asunto(s)
Insulinas , Ovario , Animales , Ácidos Grasos , Femenino , Fertilidad/fisiología , Humanos , Leptina , Ratones , Fenotipo
9.
Br J Nutr ; : 1-10, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35929337

RESUMEN

Low intake or tissue concentrations of the n-6 PUFA, especially to the major n-6 PUFA linoleic acid (LA), and low exercise cardiac power (ECP) are both associated with CVD risk. However, associations of the n-6 PUFA with ECP are unknown. The aim of the present study was to explore cross-sectional associations of the serum total n-6 PUFA, LA, arachidonic acid (AA), γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA) concentrations with ECP and its components. In total, 1685 men aged 42-60 years from the Kuopio Ischaemic Heart Disease Risk Factor Study and free of CVD were included. ANCOVA was used to examine the mean values of ECP (maximal oxygen uptake (VO2max)/maximal systolic blood pressure (SBP)) and its components in quartiles of the serum total and individual n-6 PUFA concentrations. After multivariable adjustments, higher serum total n-6 PUFA concentration was associated with higher ECP and VO2max (for ECP, the extreme-quartile difference was 0·77 ml/mmHg (95 % CI 0·38, 1·16, Pfor trend across quartiles < 0·001) and for VO2max 157 ml/min (95 % CI 85, 230, Pfor trend < 0·001), but not with maximal SBP. Similar associations were observed with serum LA concentration. Higher serum AA concentration was associated with higher ECP but not with VO2max or maximal SBP. The minor serum n-6 PUFA GLA and DGLA were associated with higher maximal SBP during exercise test and DGLA also with higher VO2max but neither with ECP. In conclusion, especially LA concentration was associated with higher ECP. This may provide one mechanism for the cardioprotective properties of, especially, LA.

10.
Am J Clin Nutr ; 116(3): 786-797, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35849016

RESUMEN

BACKGROUND: Lipid emulsions are a key component of total parenteral nutrition (TPN) and are administered to patients who are unable to ingest their daily required calories orally. Lipid emulsions rich with n-6 (ω-6) PUFAs are known to cause parenteral nutrition-associated liver disease and have inflammatory side effects, whereas n-3 PUFA-rich emulsions have favourable clinical outcomes. OBJECTIVES: The present study used targeted lipid mediator analysis to investigate the metabolism of a n-3 PUFA-rich lipid emulsion and a n-6 PUFA-rich lipid emulsion in a mouse model of TPN and in primary human monocyte-derived macrophages (MDMs) and CD4+ T cells. RESULTS: Mice given n-3 PUFA-based TPN for 7 d had a less proinflammatory lipid mediator profile compared with those receiving n-6 PUFA-based TPN. This was characterized by higher concentrations of specialized pro-resolving mediators (SPMs) and endocannabinoids, including resolvin D (RvD) 1, maresin (MaR) 1, MaR2, protectin D1 (PD1), protectin DX (PDX), and the endocannabinoids eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) in the liver and RvD1, 17R-RvD1, RvD2, RvD3, RvD5, MaR1, MaR2, PD1, PDX, and EPEA and DHEA in the spleen. The spleen was identified as a source of high lipid mediator and SPM formation as lipid mediator concentrations were on average 25-fold higher than in the liver. Additionally, n-3 PUFA-treated primary human MDMs produced RvD5 and the endocannabinoids EPEA and DHEA, which was associated with an increased IL-10 secretion. In contrast, primary human CD4+ T cells showed only an increase in SPM precursors and an increase in the endocannabinoids EPEA and DHEA, which was associated with reduced cytokine expression. CONCLUSIONS: This demonstrates that lipid mediators, particularly SPMs and endocannabinoids from spleen, could play a key role in facilitating the favorable clinical outcomes associated with the use of n-3 PUFA-rich lipid emulsions in TPN.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Deshidroepiandrosterona , Ácidos Docosahexaenoicos , Emulsiones , Endocannabinoides , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados , Humanos , Ratones
11.
Appl Physiol Nutr Metab ; 47(9): 973-978, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649282

RESUMEN

This study investigated intakes of total, n-3, and n-6 polyunsaturated fatty acids (PUFA) in 109 preschool-aged children who participated in the Guelph Family Health Study pilot. Intakes of total, n-3, and n-6 PUFA did not meet recommendations. This study highlights the need for additional monitoring and potential interventions to improve PUFA intake in preschool-aged children. Clinical Trial #NCT02223234. Novelty: Canadian preschool-aged children are not consuming enough n-3 and n-6 PUFA.


Asunto(s)
Salud de la Familia , Ácidos Grasos Omega-3 , Canadá , Niño , Preescolar , Estudios de Cohortes , Ácidos Docosahexaenoicos , Ácidos Grasos Omega-6 , Ácidos Grasos Insaturados , Humanos
12.
J Agric Food Chem ; 70(21): 6418-6428, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588299

RESUMEN

The present study aimed to investigate the effects of saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) on alcoholic liver disease (ALD) and the underlying mechanisms. C57BL/6J male mice were randomly fed a corn oil or palm oil diet (rich in n-6 PUFA and SFA, respectively) with or without ethanol for four weeks (n = 10/group). A series of experiments in vitro with AML-12 hepatocyte were conducted to better elucidate the potential mechanisms underlying the phenomenon observed in animals. Compared with palm oil, corn oil aggravated alcohol-induced liver injury and hepatic steatosis, indicated by a histological analysis and significant elevations of plasma alanine aminotransferase and hepatic triacylglycerol (TG) level. Apoptosis-associated proteins in the ASK1-JNK pathway were significantly enhanced in the liver of mice from the corn oil + ethanol group than in the palm oil + ethanol group. The corn oil + ethanol diet also inhibited the activation of both AMPK and downstream protein acetyl-CoA carboxylase (ACC) and promoted the SREBP-1c expression, subsequently accelerating lipid synthesis. In addition, 4-hydroxynonenal (4-HNE) levels in plasma and liver were significantly upregulated in response to corn oil + ethanol feeding. Interestingly, the in vitro study showed that 4-HNE significantly attenuated cell viability, elevated the expression of cleaved-caspase 3 protein and TG level, and regulated key molecules in ASK1-JNK and AMPK pathways in a dose-dependent manner. In conclusion, the n-6 PUFA diet showed a negative effect on alcohol-induced liver injury and steatosis. It might be related to the upregulation of 4-HNE and subsequent changes of proteins, namely, ASK1, JNK, AMPK, ACC, and SREBP-1c.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hígado Graso , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Aldehídos , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/patología , Aceite de Maíz/metabolismo , Etanol/efectos adversos , Etanol/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Omega-6/metabolismo , Hígado Graso/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Aceite de Palma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
13.
Lipids Health Dis ; 21(1): 23, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177087

RESUMEN

BACKGROUND: Relatively little is known about the physiological whole blood fatty acid composition in young people. Likewise, few studies have addressed the question of correlations between Mediterranean diet (MedDiet) adherence and blood fatty acids in childhood. METHODS: The fatty acid profile in whole blood from subjects, 46 days-19 years old (n = 152), without acute, chronic, or inflammatory diseases was analysed by gas chromatography. Dietary data was extracted from a 24-h recall in a subgroup of subjects (n = 60) into a modified Diet Quality Index for Children (KIDMED) questionnaire to evaluate MedDiet adherence. The cohort was divided into three age groups: < 2, 2- < 10, and 10-19 years. Kruskal-Wallis test and Bonferroni post hoc test were used to check for age group fatty acid differences. For correlations, Spearman's correlation coefficient and partial Spearman's correlation coefficient were used. RESULTS: Linoleic acid, EPA, DHA, palmitic acid, and total saturated fatty acids were stable over age groups. Dihomo-gamma-linolenic acid (DGLA), arachidonic acid (AA), total polyunsaturated FAs (PUFA), and total omega-6 PUFA increased from age group < 2 years; alpha-linolenic acid, total omega-3 PUFA, oleic acid, and total monounsaturated FAs decreased. Adherence to the MedDiet was at low-medium level in 91.7% of the subjects. In the age group 2- < 10 yrs., the degree of adherence correlated positively with total MUFA and PUFA balance, negatively with total PUFA, total n6-PUFA, AA/DHA, AA/EPA, and n6/n3. Age did not influence the correlations as to PUFA balance and AA/EPA. CONCLUSIONS: Increased FA proportions with age were seen in the n6-series of PUFA. The n3-FA species decreased or were stable. The vast majority of the subjects with dietary data, 92%, obtained a KIDMED score indicative of low-medium adherence to the MedDiet. The score correlated negatively with various n6-species, i.e. the MedDiet suppressed circulating n6-PUFA. Whole blood may be used to investigate FAs and MedDiet adherence correlations which may be applied in the study of health issues in childhood.


Asunto(s)
Dieta Mediterránea , Ácidos Grasos Omega-3 , Adolescente , Ácido Araquidónico , Niño , Preescolar , Estudios de Cohortes , Ácidos Grasos , Humanos
14.
Eur J Nutr ; 61(4): 1981-1989, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34961890

RESUMEN

PURPOSE: N-6 polyunsaturated fatty acids (PUFA), particularly linoleic acid (LA), have been associated with lower risk of coronary heart disease (CHD), but little is known about their antiarrhythmic properties. We investigated the association of the serum n-6 PUFAs with the risk of atrial fibrillation (AF), the most common type of cardiac arrhythmia. METHODS: The study included 2450 men from the Kuopio Ischaemic Heart Disease Risk Factor Study, aged 42-60 years at baseline. The total n-6 PUFA includes linoleic acid (LA), arachidonic acid (AA), γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA). Cox proportional hazards regression was used to estimate hazard ratio (HR) of incident events. RESULTS: During the mean follow-up of 22.4 years, 486 AF cases occurred. The multivariable-adjusted HR in the highest versus the lowest quartile of total serum n-6 PUFA concentration was 0.79 (95% CI 0.58-1.08, P trend = 0.04). When evaluated individually, only serum LA concentration was inversely associated with AF risk (multivariable-adjusted extreme-quartile HR 0.69, 95% CI 0.51-0.94, P trend = 0.02). These associations were stronger among the men without history of CHD or congestive heart failure at baseline, compared to men with such disease history (P for interaction = 0.05 for total n-6 PUFA and LA). Similar associations were observed with dietary LA and AA intakes. No significant associations were observed with serum AA, GLA or DGLA concentrations. CONCLUSIONS: Higher circulating concentration and dietary intake of n-6 PUFA, mainly LA, are associated with lower risk of AF, especially among men without history of CHD or congestive heart failure.


Asunto(s)
Fibrilación Atrial , Enfermedad Coronaria , Ácidos Grasos Omega-3 , Insuficiencia Cardíaca , Fibrilación Atrial/epidemiología , Enfermedad Coronaria/epidemiología , Ácidos Grasos Omega-6 , Ácidos Grasos Insaturados , Estudios de Seguimiento , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Ácido Linoleico , Masculino , Estudios Prospectivos , Factores de Riesgo
15.
J Clin Immunol ; 42(1): 146-157, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34669143

RESUMEN

PURPOSE: Fatty acid (FA) abnormalities are found in various inflammatory disorders and have been related to disturbed gut microbiota. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with altered gut microbial composition. We hypothesized that there is an altered FA profile in CVID patients, related to gut microbial dysbiosis. METHODS: Plasma FAs were measured in 39 CVID patients and 30 healthy controls. Gut microbial profile, a food frequency questionnaire, and the effect of the oral antibiotic rifaximin were investigated in CVID patients. RESULTS: The n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) (1.4 [1.0-1.8] vs. 1.9 [1.2-2.5], median (IQR), P < 0.05), and docosahexaenoic acid (DHA) (3.2 [2.4-3.9] vs. 3.5 [2.9-4.3], P < 0.05), all values expressed as weight percent of total plasma FAs, were reduced in CVID compared to controls. Also, n-6 PUFAs (34.3 ± 3.4 vs. 37.1 ± 2.8, mean ± SD, P < 0.001) and linoleic acid (LA) (24.5 ± 3.3 vs. 28.1 ± 2.7, P < 0.0001) and the FA anti-inflammatory index (98.9 [82.1-119.4] vs. 117.0 [88.7-153.1], median (IQR), P < 0.05) were reduced in CVID. The microbial alpha diversity was positively associated with plasma n-6 PUFAs (r = 0.41, P < 0.001) and LA (r = 0.51, P < 0.001), but not n-3 PUFAs (P = 0.78). Moreover, a 2-week course of rifaximin significantly reduced the proportion of n-6 PUFAs (P = 0.04, UNIANOVA). Serum immunoglobulin G (IgG) levels correlated with plasma n-3 PUFAs (rho = 0.36, P = 0.03) and DHA (rho = 0.41, P = 0.009). CONCLUSION: We found a potentially unfavorable FA profile in CVID, related to low IgG levels. High plasma n-6 PUFAs were related to increased gut microbial diversity and altered by rifaximin therapy.


Asunto(s)
Inmunodeficiencia Variable Común , Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Inmunodeficiencia Variable Común/tratamiento farmacológico , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , Humanos
16.
Appl Physiol Nutr Metab ; 46(11): 1378-1388, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34115947

RESUMEN

Polyunsaturated fatty acids (PUFA)-derived bioactive lipid mediators called oxylipins have been shown to influence muscle growth, inflammation and repair in select muscles. Since individual oxylipins have varying effects and potencies, broad profiling in differing muscle types is required to further understand their overall effects. In addition, diet and sex are key determinants of oxylipin levels. Therefore, to provide comprehensive data on oxylipin profiles in rat soleus (SO), red gastrocnemius (RG), and white gastrocnemius (WG) muscles, female and male weanling Sprague-Dawley rats were provided control or experimental diets enriched in n-3 (ω-3) or n-6 (ω-6) PUFA for 6 weeks. Free oxylipin analysis by HPLC/MS/MS revealed that SO muscle had 25% more oxylipins and 4-13 times greater oxylipin mass than WG muscle. Dietary n-3 PUFA (α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid) each increased n-3 oxylipins derived directly from their precursors and several that were not direct precursors, while reducing arachidonic acid derived oxylipins. Dietary linoleic acid had few effects on oxylipins. Oxylipins with a sex effect were higher in females in SO and RG. Oxylipins generally reflected the effects of diet and sex on PUFA, but there were exceptions. These fundamental oxylipin profile data provide groundwork knowledge and context for future research on muscle oxylipin functions. Novelty: Rat SO compared with RG and WG muscles have a higher number and greater mass of oxylipins. Oxylipins generally reflect diet effects on PUFA in all muscles, but there are notable exceptions. Oxylipins in SO and RG are higher in females.


Asunto(s)
Grasas de la Dieta/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Oxilipinas/metabolismo , Factores de Edad , Animales , Femenino , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Caracteres Sexuales
17.
Metab Syndr Relat Disord ; 19(5): 296-304, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33570478

RESUMEN

Background: We previously established that male Swiss mice (Mus musculus) receiving a high-fat diet (HFD) during 8 weeks exhibit similar caloric ingestion and body weight (grams) compared with mice fed a high-carbohydrate diet (HCD). HFD mice exhibit a lower inflammatory state than an HCD in the liver, skeletal muscle, and brain. In addition, we demonstrated that HFD and HCD modulated fatty acids (FA) composition in these tissues. In this study, our objective was to compare HFD mice and HCD mice in terms of systemic inflammation. Methods: Saturated FA (SFA), monounsaturated FA, omega-6 polyunsaturated FA (n-6 PUFA), and n-3 PUFA were evaluated at the time points 0, 1, 7, 14, 28, and 56 days after starting the administration of the diets. We investigated n-6 PUFA:n-3 PUFA, SFA:n-3 PUFA, palmitic acid:α-linolenic acid (ALA), and myristic acid:docosahexaenoic acid (DHA) ratios as potential serum biomarkers of systemic inflammation. We also measured the serum levels of basic fibroblast growth factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), inducible protein 10 (IP-10), interferon gamma (IFN-γ), interleukin (IL)-1α, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, macrophage inflammatory protein-1α (MIP-1-α), monocyte chemotactic protein 1 (MCP-1), monokine induced by IFN-γ (MIG), and tumor necrosis factor α (TNF-α). Results: The HFD group had lower (P < 0.05) n-6 PUFA:n-3 PUFA, palmitic acid:ALA, myristic acid:DHA ratios, and lower plasma levels of proinflammatory cytokines (IFN-γ, MIG, GM-CSF, and IL-6). Conclusion: The HFD mice showed lower systemic inflammation compared with a caloric ingestion-body weight-matched control HCD mice.


Asunto(s)
Dieta Alta en Grasa , Carbohidratos de la Dieta , Inflamación , Animales , Dieta Alta en Grasa/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Inflamación/epidemiología , Masculino , Ratones
18.
Nutrients ; 12(11)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187208

RESUMEN

Maternal n-6 polyunsaturated fatty acids (PUFA) consumption during gestation and lactation can predispose offspring to the development of metabolic diseases such as obesity later in life. However, the mechanisms underlying the potential programming effect of n-6 PUFA upon offspring physiology are not yet all established. Herein, we investigated the effects of maternal and weaning linoleic acid (LA)-rich diet interactions on gut intestinal and adipose tissue physiology in young (3-month-old) and older (6-month-old) adult offspring. Pregnant rats were fed a control diet (2% LA) or an LA-rich diet (12% LA) during gestation and lactation. At weaning, offspring were either maintained on the maternal diet or fed the other diet for 3 or 6 months. At 3 months of age, the maternal LA-diet favored low-grade inflammation and greater adiposity, while at 6 months of age, offspring intestinal barrier function, adipose tissue physiology and hepatic conjugated linoleic acids were strongly influenced by the weaning diet. The maternal LA-diet impacted offspring cecal microbiota diversity and composition at 3 months of age, but had only few remnant effects upon cecal microbiota composition at 6 months of age. Our study suggests that perinatal exposure to high LA levels induces a differential metabolic response to weaning diet exposure in adult life. This programming effect of a maternal LA-diet may be related to the alteration of offspring gut microbiota.


Asunto(s)
Tejido Adiposo/metabolismo , Microbioma Gastrointestinal/fisiología , Ácido Linoleico/administración & dosificación , Hígado/metabolismo , Destete , Adiposidad , Animales , Femenino , Homeostasis , Lactancia , Ácidos Linoleicos Conjugados/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratas
19.
Artículo en Inglés | MEDLINE | ID: mdl-32474355

RESUMEN

Polyunsaturated fatty acids (PUFAs) play multiple physiological roles. They regulate the structure and function of cell membranes and cell growth and proliferation, and apoptosis. In addition, PUFAs are involved in cellular signaling, gene expression and serve as precursors to second messengers such as eicosanoids, docosanoids etc. and regulate several physiological processes including placentation, inflammation, immunity, angiogenesis, platelet function, synaptic plasticity, neurogenesis, bone formation, energy homeostasis, pain sensitivity, stress, and cognitive functions. Linoleic acid, 18:2n-6 (LA) and alpha-linolenic acid, 18:3n-3 (ALA) are the two essential fatty acids obtained from the diets and subsequently their long-chain polyunsaturated fatty acids (LCPUFAs) are accumulated in the body. The maternal plasma LCPUFAs especially accumulated in larger amounts in the brain during the third trimester of pregnancy via the placenta and postnatally from mother's breast milk. Various studies, including ours, suggest PUFA's important role in placentation, as well as in growth and development of the offspring. However, intakes of maternal n-3 PUFAs during pregnancy and lactation are much lower in India compared with the Western population. In India, n-3 fatty acid status is further reduced by higher intake of n-6 PUFA rich oils and trans fats. More data on the impacts of long term maternal n-3 PUFA deficiency on placental structure and function, gene expression, epigenetic changes and resultant cognitive function of fetus & infants are emerging. This review summarizes the impacts of n-3 PUFA deficiency in utero on fetal growth and development, adiposity, energy metabolism, musculoskeletal development, and epigenetic changes in feto-placental axis from the recently available pre-clinical and clinical data.


Asunto(s)
Encéfalo/embriología , Ácidos Grasos Omega-3/deficiencia , Química Encefálica , Desarrollo Embrionario , Epigénesis Genética , Femenino , Humanos , India , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal , Embarazo
20.
Lipids ; 55(3): 261-270, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32255511

RESUMEN

As the largest secondary lymphoid organ, the spleen plays an important role in immune responses. The role of arachidonic acid (ARA) and its 20-carbon eicosanoids in modulating immune function has long been of interest. However, recent advances have enabled the identification of numerous other n-6 and n-3 polyunsaturated fatty acid (PUFA)-derived oxylipins. Here, we investigate the effects of diet and sex on the spleen nonesterified oxylipin profiles and phospholipid and neutral lipid PUFA composition in Sprague-Dawley rats supplemented with oils rich in α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or linoleic acid. Dietary ALA, EPA, and DHA resulted in lower levels of ARA and ARA oxylipins. Oxylipins derived from other n-6 PUFA were also reduced despite no or opposite effect on their PUFA levels. Each diet also resulted in higher levels of oxylipins almost exclusively derived from the supplemented PUFA, despite PUFA in the same biosynthetic pathway also often being increased. Further, while oxylipin differences often reflected changes to phospholipid PUFA, there were instances where they corresponded more closely to changes in neutral lipid PUFA. With respect to sex effects, >50% of lipoxygenase ARA-derived oxylipins were higher in males in at least one diet group, while multiple DHA oxylipins were lower in males only in rats provided the DHA diet. This fundamental description of oxylipin composition in the spleen, including the influence of diet and sex and the relationship to PUFA composition, will help inform future studies examining the functions of these oxylipins under physiological and pathological conditions.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-6/análisis , Oxilipinas/análisis , Bazo/química , Animales , Ácido Araquidónico/análisis , Ácidos Docosahexaenoicos/análisis , Ácido Eicosapentaenoico/análisis , Femenino , Masculino , Fosfolípidos/análisis , Ratas Sprague-Dawley , Caracteres Sexuales , Ácido alfa-Linolénico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA