Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
World J Crit Care Med ; 13(2): 91397, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38855276

RESUMEN

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.

2.
Anesthesiol Clin ; 42(2): 203-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705671

RESUMEN

Upper extremity injuries are frequent in athletes which may require surgeries. Regional anesthesia for postoperative analgesia is important to aid recovery, and peripheral nerve blocks for surgical anesthesia enable surgeries to be performed without general anesthetics and their associated adverse effects. The relevant nerve block approaches to anesthetize the brachial plexus for elbow, wrist and hand surgeries are discussed in this article. There is very limited margin for error when performing nerve blocks and multimodal monitoring approach to reduce harm are outlined. Lastly, the importance of obtaining informed consent prior to nerve block procedures should not be overlooked.


Asunto(s)
Anestesia de Conducción , Atletas , Bloqueo Nervioso , Extremidad Superior , Humanos , Anestesia de Conducción/métodos , Extremidad Superior/cirugía , Bloqueo Nervioso/métodos
3.
Acta Neurochir (Wien) ; 166(1): 240, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814348

RESUMEN

BACKGROUND: Intracranial pressure (ICP) monitoring plays a key role in patients with traumatic brain injury (TBI), however, cerebral hypoxia can occur without intracranial hypertension. Aiming to improve neuroprotection in these patients, a possible alternative is the association of Brain Tissue Oxygen Pressure (PbtO2) monitoring, used to detect PbtO2 tension. METHOD: We systematically searched PubMed, Embase and Cochrane Central for RCTs comparing combined PbtO2 + ICP monitoring with ICP monitoring alone in patients with severe or moderate TBI. The outcomes analyzed were mortality at 6 months, favorable outcome (GOS ≥ 4 or GOSE ≥ 5) at 6 months, pulmonary events, cardiovascular events and sepsis rate. RESULTS: We included 4 RCTs in the analysis, totaling 505 patients. Combined PbtO2 + ICP monitoring was used in 241 (47.72%) patients. There was no significant difference between the groups in relation to favorable outcome at 6 months (RR 1.17; 95% CI 0.95-1.43; p = 0.134; I2 = 0%), mortality at 6 months (RR 0.82; 95% CI 0.57-1.18; p = 0.281; I2 = 34%), cardiovascular events (RR 1.75; 95% CI 0.86-3.52; p = 0.120; I2 = 0%) or sepsis (RR 0.75; 95% CI 0.25-2.22; p = 0.604; I2 = 0%). The risk of pulmonary events was significantly higher in the group with combined PbtO2 + ICP monitoring (RR 1.44; 95% CI 1.11-1.87; p = 0.006; I2 = 0%). CONCLUSIONS: Our findings suggest that combined PbtO2 + ICP monitoring does not change outcomes such as mortality, functional recovery, cardiovascular events or sepsis. Furthermore, we found a higher risk of pulmonary events in patients undergoing combined monitoring.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal/fisiología , Monitoreo Fisiológico/métodos , Monitorización Neurofisiológica/métodos , Oxígeno/análisis , Oxígeno/metabolismo
4.
World Neurosurg ; 187: e620-e628, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38679378

RESUMEN

OBJECTIVE: The local effects of an intracerebral hemorrhage (ICH) on surrounding brain tissue can be detected bedside using multimodal brain monitoring techniques. The aim of this study is to design a gradient boosting regression model using the R package boostmtree with the ability to predict lactate-pyruvate ratio measurements in ICH. METHODS: We performed a retrospective analysis of 6 spontaneous ICH and 6 traumatic ICH patients who underwent surgical removal of the clot with microdialysis catheters placed in the perihematomal zone. Predictors of glucose, lactate, pyruvate, age, sex, diagnosis, and operation status were used to design our model. RESULTS: In a holdout analysis, the model forecasted lactate-pyruvate ratio trends in a representative in-sample testing set. We anticipate that boostmtree could be applied to designs of similar regression models to analyze trends in other multimodal monitoring features across other types of acute brain injury. CONCLUSIONS: The model successfully predicted hourly lactate-pyruvate ratios in spontaneous ICH and traumatic ICH cases after the hemorrhage evacuation and displayed significantly better performance than linear models. Our results suggest that boostmtree may be a powerful tool in developing more advanced mathematical models to assess other multimodal monitoring parameters for cases in which the perihematomal environment is monitored.


Asunto(s)
Hemorragia Cerebral , Ácido Láctico , Ácido Pirúvico , Humanos , Hemorragia Cerebral/diagnóstico , Estudios Retrospectivos , Ácido Láctico/metabolismo , Masculino , Femenino , Ácido Pirúvico/metabolismo , Persona de Mediana Edad , Anciano , Algoritmos , Microdiálisis/métodos , Microdiálisis/tendencias , Adulto , Anciano de 80 o más Años
5.
J Intensive Med ; 4(2): 247-260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681785

RESUMEN

Background: Patients with acute brain injury (ABI) are a peculiar population because ABI does not only affect the brain but also other organs such as the lungs, as theorized in brain-lung crosstalk models. ABI patients often require mechanical ventilation (MV) to avoid the complications of impaired respiratory function that can follow ABI; MV should be settled with meticulousness owing to its effects on the intracranial compartment, especially regarding positive end-expiratory pressure (PEEP). This scoping review aimed to (1) describe the physiological basis and mechanisms related to the effects of PEEP in ABI; (2) examine how clinical research is conducted on this topic; (3) identify methods for setting PEEP in ABI; and (4) investigate the impact of the application of PEEP in ABI on the outcome. Methods: The five-stage paradigm devised by Peters et al. and expanded by Arksey and O'Malley, Levac et al., and the Joanna Briggs Institute was used for methodology. We also adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension criteria. Inclusion criteria: we compiled all scientific data from peer-reviewed journals and studies that discussed the application of PEEP and its impact on intracranial pressure, cerebral perfusion pressure, and brain oxygenation in adult patients with ABI. Exclusion criteria: studies that only examined a pediatric patient group (those under the age of 18), experiments conducted solely on animals; studies without intracranial pressure and/or cerebral perfusion pressure determinations, and studies with incomplete information. Two authors searched and screened for inclusion in papers published up to July 2023 using the PubMed-indexed online database. Data were presented in narrative and tubular form. Results: The initial search yielded 330 references on the application of PEEP in ABI, of which 36 met our inclusion criteria. PEEP has recognized beneficial effects on gas exchange, but it produces hemodynamic changes that should be predicted to avoid undesired consequences on cerebral blood flow and intracranial pressure. Moreover, the elastic properties of the lungs influence the transmission of the forces applied by MV over the brain so they should be taken into consideration. Currently, there are no specific tools that can predict the effect of PEEP on the brain, but there is an established need for a comprehensive monitoring approach for these patients, acknowledging the etiology of ABI and the measurable variables to personalize MV. Conclusion: PEEP can be safely used in patients with ABI to improve gas exchange keeping in mind its potentially harmful effects, which can be predicted with adequate monitoring supported by bedside non-invasive neuromonitoring tools.

6.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671733

RESUMEN

Near-infrared spectroscopy (NIRS) regional cerebral oxygen saturation (rSO2)-based cerebrovascular reactivity (CVR) monitoring has enabled entirely non-invasive, continuous monitoring during both acute and long-term phases of care. To date, long-term post-injury CVR has not been properly characterized after acute traumatic neural injury, also known as traumatic brain injury (TBI). This study aims to compare CVR in those recovering from moderate-to-severe TBI with a healthy control group. A total of 101 heathy subjects were recruited for this study, along with 29 TBI patients. In the healthy cohort, the arterial blood pressure variant of the cerebral oxygen index (COx_a) was not statistically different between males and females or in the dominant and non-dominant hemispheres. In the TBI cohort, COx_a was not statistically different between the first and last available follow-up or by the side of cranial surgery. Surprisingly, CVR, as measured by COx_a, was statistically better in those recovering from TBI than those in the healthy cohort. In this prospective cohort study, CVR, as measured by NIRS-based methods, was found to be more active in those recovering from TBI than in the healthy cohort. This study may indicate that in individuals that survive TBI, CVR may be enhanced as a neuroprotective measure.

7.
Crit Care ; 28(1): 78, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486211

RESUMEN

BACKGROUND: Near-infrared spectroscopy regional cerebral oxygen saturation (rSO2) has gained interest as a raw parameter and as a basis for measuring cerebrovascular reactivity (CVR) due to its noninvasive nature and high spatial resolution. However, the prognostic utility of these parameters has not yet been determined. This study aimed to identify threshold values of rSO2 and rSO2-based CVR at which outcomes worsened following traumatic brain injury (TBI). METHODS: A retrospective multi-institutional cohort study was performed. The cohort included TBI patients treated in four adult intensive care units (ICU). The cerebral oxygen indices, COx (using rSO2 and cerebral perfusion pressure) as well as COx_a (using rSO2 and arterial blood pressure) were calculated for each patient. Grand mean thresholds along with exposure-based thresholds were determined utilizing sequential chi-squared analysis and univariate logistic regression, respectively. RESULTS: In the cohort of 129 patients, there was no identifiable threshold for raw rSO2 at which outcomes were found to worsen. For both COx and COx_a, an optimal grand mean threshold value of 0.2 was identified for both survival and favorable outcomes, while percent time above - 0.05 was uniformly found to have the best discriminative value. CONCLUSIONS: In this multi-institutional cohort study, raw rSO2was found to contain no significant prognostic information. However, rSO2-based indices of CVR, COx and COx_a, were found to have a uniform grand mean threshold of 0.2 and exposure-based threshold of - 0.05, above which clinical outcomes markedly worsened. This study lays the groundwork to transition to less invasive means of continuously measuring CVR.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Espectroscopía Infrarroja Corta , Adulto , Humanos , Estudios de Cohortes , Pronóstico , Estudios Retrospectivos , Espectroscopía Infrarroja Corta/métodos , Saturación de Oxígeno , Canadá , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen
8.
Radiol Oncol ; 58(2): 279-288, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38452387

RESUMEN

BACKGROUND: Intraoperative fluid management is a crucial aspect of cancer surgery, including colorectal surgery and pancreatoduodenectomy. The study tests if intraoperative multimodal monitoring reduces postoperative morbidity and duration of hospitalisation in patients undergoing major abdominal surgery treated by the same anaesthetic protocols with epidural analgesia. PATIENTS AND METHODS: A prospective study was conducted in 2 parallel groups. High-risk surgical patients undergoing major abdominal surgery were randomly selected in the control group (CG), where standard monitoring was applied (44 patients), and the protocol group (PG), where cerebral oxygenation and extended hemodynamic monitoring were used with the protocol for intraoperative interventions (44 patients). RESULTS: There were no differences in the median length of hospital stay, CG 9 days (interquartile range [IQR] 8 days), PG 9 (5.5), p = 0.851. There was no difference in postoperative renal of cardiac impairment. Procalcitonin was significantly higher (highest postoperative value in the first 3 days) in CG, 0.75 mcg/L (IQR 3.19 mcg/L), than in PG, 0.3 mcg/L (0.88 mcg/L), p = 0.001. PG patients received a larger volume of intraoperative fluid; median intraoperative fluid balance +1300 ml (IQR 1063 ml) than CG; +375 ml (IQR 438 ml), p < 0.001. CONCLUSIONS: There were significant differences in intraoperative fluid management and vasopressor use. The median postoperative value of procalcitonin was significantly higher in CG, suggesting differences in immune response to tissue trauma in different intraoperative fluid status, but there was no difference in postoperative morbidity or hospital stay.


Asunto(s)
Fluidoterapia , Cuidados Intraoperatorios , Tiempo de Internación , Complicaciones Posoperatorias , Humanos , Fluidoterapia/métodos , Masculino , Femenino , Estudios Prospectivos , Anciano , Tiempo de Internación/estadística & datos numéricos , Persona de Mediana Edad , Cuidados Intraoperatorios/métodos , Complicaciones Posoperatorias/prevención & control , Neoplasias Abdominales/cirugía , Monitoreo Intraoperatorio/métodos , Pancreaticoduodenectomía , Polipéptido alfa Relacionado con Calcitonina/sangre , Analgesia Epidural/métodos , Resultado del Tratamiento
9.
J Crit Care ; 82: 154806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38555684

RESUMEN

BACKGROUND: Multimodal neuromonitoring (MMM) aims to improve outcome after acute brain injury, and thus admission in specialized Neurocritical Care Units with potential access to MMM is necessary. Various invasive and noninvasive modalities have been developed, however there is no strong evidence to support monitor combinations nor is there a known standardized approach. The goal of this study is to identify the most used invasive and non-invasive neuromonitoring modalities in daily practice as well as ubiquitousness of MMM standardization. METHODS: In order to investigate current availability and protocolized implementation of MMM among neurocritical care units in US and non-US intensive care units, we designed a cross-sectional survey consisting of a self-administered online questionnaire of 20 closed-ended questions disseminated by the Neurocritical Care Society. RESULTS: Twenty-one critical care practitioners responded to our survey with a 76% completion rate. The most commonly utilized non-invasive neuromonitoring modalities were continuous electroencephalography followed by transcranial doppler. The most common invasive modalities were external ventricular drain followed by parenchymal intracranial pressure (ICP) monitoring. MMM is most utilized in patients with subarachnoid hemorrhage and there were no differences regarding established institutional protocol, 24-h cEEG availability and invasive monitor placement between teaching and non-teaching hospitals. MMM is considered standard of care in 28% of responders' hospitals, whereas in 26.7% it is deemed experimental and only done as part of clinical trials. Only 26.7% hospitals use a computerized data integration system. CONCLUSION: Our survey revealed overall limited use of MMM with no established institutional protocols among institutions. Ongoing research and further standardization of MMM will clarify its benefit to patients suffering from severe brain injury.


Asunto(s)
Lesiones Encefálicas , Cuidados Críticos , Electroencefalografía , Humanos , Estudios Transversales , Cuidados Críticos/métodos , Lesiones Encefálicas/terapia , Encuestas y Cuestionarios , Unidades de Cuidados Intensivos , Monitoreo Fisiológico/métodos , Presión Intracraneal , Monitorización Neurofisiológica/métodos , Ultrasonografía Doppler Transcraneal
10.
Neurocrit Care ; 40(2): 750-758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37697127

RESUMEN

BACKGROUND: Cerebral hypoxia is a frequent cause of secondary brain damage in patients with acute brain injury. Although hypercapnia can increase intracranial pressure, it may have beneficial effects on tissue oxygenation. We aimed to assess the effects of hypercapnia on brain tissue oxygenation (PbtO2). METHODS: This single-center retrospective study (November 2014 to June 2022) included all patients admitted to the intensive care unit after acute brain injury who required multimodal monitoring, including PbtO2 monitoring, and who underwent induced moderate hypoventilation and hypercapnia according to the decision of the treating physician. Patients with imminent brain death were excluded. Responders to hypercapnia were defined as those with an increase of at least 20% in PbtO2 values when compared to their baseline levels. RESULTS: On a total of 163 eligible patients, we identified 23 (14%) patients who underwent moderate hypoventilation (arterial partial pressure of carbon dioxide [PaCO2] from 44 [42-45] to 50 [49-53] mm Hg; p < 0.001) during the study period at a median of 6 (4-10) days following intensive care unit admission; six patients had traumatic brain injury, and 17 had subarachnoid hemorrhage. A significant overall increase in median PbtO2 values from baseline (21 [19-26] to 24 [22-26] mm Hg; p = 0.02) was observed. Eight (35%) patients were considered as responders, with a median increase of 7 (from 4 to 11) mm Hg of PbtO2, whereas nonresponders showed no changes (from - 1 to 2 mm Hg of PbtO2). Because of the small sample size, no variable independently associated with PbtO2 response was identified. No correlation between changes in PaCO2 and in PbtO2 was observed. CONCLUSIONS: In this study, a heterogeneous response of PbtO2 to induced hypercapnia was observed but without any deleterious elevations of intracranial pressure.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Estudios Retrospectivos , Hipercapnia/complicaciones , Hipoventilación/complicaciones , Oxígeno , Encéfalo , Lesiones Encefálicas/terapia , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Presión Intracraneal/fisiología
11.
Neurol Sci ; 45(3): 1135-1144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37828386

RESUMEN

BACKGROUND: Delayed cerebral ischemia (DCI) is a preventable cause of poor neurological outcome in aneurysmal subarachnoid hemorrhage (aSAH). Advances in radiological methods, such as cerebral perfusion computed tomography (CTP), could help diagnose DCI earlier and potentially improve outcomes in aSAH. The objective of this study was to assess whether the use of CTP to diagnose DCI early could reduce the risk of infarction related to DCI. METHODS: Retrospective cohort study of patients in the intensive care unit of Erasme Hospital (Brussels, Belgium) between 2004 and 2021 with aSAH who developed DCI. Patients were classified as: "group 1" - DCI diagnosed based on clinical deterioration or "group 2" - DCI diagnosed using CTP. The primary outcome was the development of infarction unrelated to the initial bleeding or surgery. RESULTS: 211 aSAH patients were diagnosed with DCI during the study period: 139 (66%) in group 1 and 72 (34%) in group 2. In group 1, 109 (78%) patients developed a cerebral infarction, compared to 45 (63%) in group 2 (p = 0.02). The adjusted cumulative incidence of DCI over time was lower in group 2 than in group 1 [hazard ratio 0.65 (95% CI 0.48-0.94); p = 0.02]. The use of CTP to diagnose DCI was not independently associated with mortality or neurological outcome. CONCLUSIONS: The use of CTP to diagnose DCI might help reduce the risk of developing cerebral infarction after aSAH, although the impact of such an approach on patient outcomes needs to be further demonstrated.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/diagnóstico por imagen , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Infarto Cerebral/etiología , Infarto Cerebral/complicaciones , Isquemia Encefálica/etiología , Isquemia Encefálica/complicaciones , Perfusión/efectos adversos
12.
Neurocrit Care ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991675

RESUMEN

Intracranial multimodal monitoring (iMMM) is increasingly used for neurocritical care. However, concerns arise regarding iMMM invasiveness considering limited evidence in its clinical significance and safety profile. We conducted a synthesis of evidence regarding complications associated with iMMM to delineate its safety profile. We performed a systematic review and meta-analysis (PROSPERO Registration Number: CRD42021225951) according to the Preferred Reporting Items for Systematic Review and Meta-Analysis and Peer Review of Electronic Search Strategies guidelines to retrieve evidence from studies reporting iMMM use in humans that mention related complications. We assessed risk of bias using the Newcastle-Ottawa Scale and funnel plots. The primary outcomes were iMMM complications. The secondary outcomes were putative risk factors. Of the 366 screened articles, 60 met the initial criteria and were further assessed by full-text reading. We included 22 studies involving 1206 patients and 1434 iMMM placements. Most investigators used a bolt system (85.9%) and a three-lumen device (68.8%), mainly inserting iMMM into the most injured hemisphere (77.9%). A total of 54 postoperative intracranial hemorrhages (pooled rate of 4%; 95% confidence interval [CI] 0-10%; I2 86%, p < 0.01 [random-effects model]) was reported, along with 46 misplacements (pooled rate of 6%; 95% CI 1-12%; I2 78%, p < 0.01) and 16 central nervous system infections (pooled rate of 0.43%; 95% CI 0-2%; I2 64%, p < 0.01). We found 6 system breakings, 18 intracranial bone fragments, and 5 cases of pneumocephalus. Currently, iMMM systems present a similar safety profile as intracranial devices commonly used in neurocritical care. Long-term outcomes of prospective studies will complete the benefit-risk assessment of iMMM in neurocritical care. Consensus-based reporting guidelines on iMMM use are needed to bolster future collaborative efforts.

13.
Bioengineering (Basel) ; 10(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37892854

RESUMEN

Brain tissue oxygen tension (PbtO2) has emerged as a cerebral monitoring modality following traumatic brain injury (TBI). Near-infrared spectroscopy (NIRS)-based regional cerebral oxygen saturation (rSO2) can non-invasively examine cerebral oxygen content and has the potential for high spatial resolution. Past studies examining the relationship between PbtO2 and NIRS-based parameters have had conflicting results with varying degrees of correlation. Understanding this relationship will help guide multimodal monitoring practices and impact patient care. The aim of this study is to examine the relationship between PbtO2 and rSO2 in a cohort of TBI patients by leveraging contemporary statistical methods. A multi-institutional retrospective cohort study of prospectively collected data was performed. Moderate-to-severe adult TBI patients were included with concurrent rSO2 and PbtO2 monitoring during their stay in the intensive care unit (ICU). The high-resolution data were analyzed utilizing time series techniques to examine signal stationarity as well as the cross-correlation relationship between the change in PbtO2 and the change in rSO2 signals. Finally, modeling of the change in PbtO2 by the change in rSO2 was attempted utilizing linear methods that account for the autocorrelative nature of the data signals. A total of 20 subjects were included in the study. Cross-correlative analysis found that changes in PbtO2 were most significantly correlated with changes in rSO2 one minute earlier. Through mixed-effects and time series modeling of parameters, changes in rSO2 were found to often have a statistically significant linear relationship with changes in PbtO2 that occurred a minute later. However, changes in rSO2 were inadequate to predict changes in PbtO2. In this study, changes in PbtO2 were found to correlate most with changes in rSO2 approximately one minute earlier. While changes in rSO2 were found to contain information about future changes in PbtO2, they were not found to adequately model them. This strengthens the body of literature indicating that NIRS-based rSO2 is not an adequate substitute for PbtO2 in the management of TBI.

14.
J Neurosurg ; 139(4): 1036-1041, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856891

RESUMEN

OBJECTIVE: The management of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage (aSAH) remains one of the most important targets for neurocritical care. Advances in monitoring technology have facilitated a more thorough understanding of the pathophysiology and therapeutic approaches, but interventions are generally limited to either systemic therapies or passive CSF drainage. The authors present a novel approach that combines a multimodal monitoring bolt-based system with an irrigating ventricular drain capable of delivering intrathecal medications and describe their early experience in patients with aSAH. METHODS: The authors performed a retrospective review of cases treated with the combined Hummingbird multimodal bolt system and the IRRAflow irrigating ventriculostomy. RESULTS: Nine patients were treated with the combined multimodal bolt system with irrigating ventriculostomy approach. The median number of days to clearance of the third and fourth ventricles was 3 days in patients with obstructive intraventricular hemorrhage. Two patients received intrathecal alteplase for intraventricular hemorrhage clearance, and 2 patients received intrathecal nicardipine as rescue therapy for severe symptomatic angiographic vasospasm. CONCLUSIONS: Combined CSF drainage, irrigation, multimodality monitoring, and automated local drug delivery are feasible using a single twist-drill hole device. Further investigation of irrigation settings and treatment approaches in high-risk cases is warranted.


Asunto(s)
Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Humanos , Hemorragia Subaracnoidea/terapia , Hemorragia Subaracnoidea/tratamiento farmacológico , Resultado del Tratamiento , Nicardipino , Activador de Tejido Plasminógeno/uso terapéutico , Drenaje , Hemorragia Cerebral/tratamiento farmacológico , Vasoespasmo Intracraneal/tratamiento farmacológico , Vasoespasmo Intracraneal/etiología
15.
Clin Neurol Neurosurg ; 234: 108011, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37862729

RESUMEN

BACKGROUND: Cerebral microdialysis (CMD) has become an established bedside monitoring modality but its implementation remains complex and costly and is therefore performed only in a few well-trained academic centers. This study investigated the relationship between cerebrospinal fluid (CSF) and CMD glucose and lactate concentrations. METHODS: Two centers retrospective study of prospectively collected data. Consecutive adult (>18 years) acutely brain injured patients admitted to the Intensive Care Unit between 2010 and 2021 were eligible if CSF and CMD glucose and lactate concentrations were concomitantly measured at least once. RESULTS: Of 113 patients being monitored with an external ventricular drainage and CMD, 49 patients (25 from Innsbruck and 24 from Brussels) were eligible for the final analysis, including a total of 96 measurements. Median CMD glucose and lactate concentrations were 1.15 (0.51-1.57) mmol/L and 3.44 (2.24-5.37) mmol/L, respectively; median CSF glucose and lactate concentrations were 4.67 (4.03-5.34) mmol/L and 3.40 (2.85-4.10) mmol/L, respectively. For the first measurements, no correlation between CSF and CMD glucose concentrations (R2 <0.01; p = 0.95) and CSF and CMD lactate concentrations (R2 =0.16; p = 0.09) was found. Considering all measurements, the repeated measure correlation analysis also showed no correlation for glucose (rrm = -0.01; 95% Confidence Intervals -0.306 to 0.281; p = 0.93) and lactate (rrm = -0.11; 95% Confidence Intervals -0.424 to 0.236; p = 0.55). CONCLUSIONS: In this study including acute brain injured patients, no correlation between CSF and brain tissue measurements of glucose and lactate was observed. As such, CSF measurements of such metabolites cannot replace CMD findings.


Asunto(s)
Encéfalo , Glucosa , Adulto , Humanos , Estudios Retrospectivos , Microdiálisis , Encéfalo/metabolismo , Glucosa/líquido cefalorraquídeo , Ácido Láctico/líquido cefalorraquídeo
16.
J Cereb Blood Flow Metab ; 43(11): 2008-2010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37632340

RESUMEN

Cerebral perfusion pressure (CPP) is calculated as the difference between mean arterial blood pressure and mean intracranial pressure, being commonly applied in neurocritical care. This commentary discusses recent physiological advances in knowledge as well as bedside practice issues that in combination indicate considering CPP under this perspective may lead to inaccurate assumptions and potentially misleading decision making.


Asunto(s)
Presión Arterial , Circulación Cerebrovascular , Circulación Cerebrovascular/fisiología , Presión Arterial/fisiología , Presión Intracraneal/fisiología , Homeostasis/fisiología , Presión Sanguínea/fisiología
17.
J Cereb Blood Flow Metab ; 43(11): 1967-1982, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37572080

RESUMEN

Delayed cerebral ischemia (DCI) is a devastating complication of aneurysmal subarachnoid hemorrhage (ASAH) causing brain infarction and disability. Cerebral microdialysis (CMD) monitoring is a focal technique that may detect DCI-related neurochemical changes as an advance warning. We conducted retrospective analyses from 44 poor-grade ASAH patients and analyzed glucose, lactate, pyruvate, and glutamate concentrations in control patients without DCI (n = 19), and in patients with DCI whose CMD probe was located within (n = 17) or outside (n = 8) a new infarct. When monitored from within a lesion, DCI was preceded by a decrease in glucose and a surge in glutamate, accompanied by increases in lactate/pyruvate and lactate/glucose ratios whereas these parameters remained stable in control patients. When CMD monitoring was performed outside the lesion, the glutamate surge was absent, but glucose and L/G ratio were still significantly altered. Overall, glucose and L/G ratio were significant biomarkers of DCI (se96.0, spe73.7-68.4). Glucose and L/G predicted DCI 67 h before CT detection of a new infarct. The pathogenesis of DCI therefore induces early metabolic disturbances that can be detected by CMD as an advance warning. Glucose and L/G could provide a trigger for initiating further examination or therapy, earlier than when guided by other monitoring techniques.


Asunto(s)
Isquemia Encefálica , Hemorragia Subaracnoidea , Humanos , Estudios Retrospectivos , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Infarto Cerebral/complicaciones , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Ácido Glutámico
18.
BJA Open ; 6: 100144, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37588175

RESUMEN

Background: General anaesthesia is associated with neurocognitive deficits in infants after noncardiac surgery. Disturbances in cerebral perfusion as a result of systemic hypotension and impaired autoregulation may be a potential cause. Our aim was to study cerebral blood flow (CBF) velocity continuously during general anaesthesia in infants undergoing noncardiac surgery and compare variations in CBF velocity with simultaneously measured near-infrared spectroscopy (NIRS), blood pressure, and heart rate. Methods: NeoDoppler, a recently developed ultrasound system, was used to monitor CBF velocity via the anterior fontanelle during induction and maintenance of general anaesthesia until the start of surgery, and during recovery. NIRS, blood pressure, and heart rate were monitored simultaneously and synchronised with the NeoDoppler measurements. Results: Thirty infants, with a median postmenstrual age at surgery of 37.6 weeks (range 28.6-60.0) were included. Compared with baseline, the trend curves showed a decrease in CBF velocity during induction and maintenance of anaesthesia and returned to baseline values during recovery. End-diastolic velocity decreased in all infants during anaesthesia, on average by 59%, whereas peak systolic- and time-averaged velocities decreased by 26% and 45%, respectively. In comparison, the reduction in mean arterial pressure was only 20%. NIRS values were high and remained stable. When adjusting for mean arterial pressure, the significant decrease in end-diastolic velocity persisted, whereas there was only a small reduction in peak systolic velocity. Conclusions: Continuous monitoring of CBF velocity using NeoDoppler during anaesthesia is feasible and may provide valuable information about cerebral perfusion contributing to a more targeted haemodynamic management in anaesthetised infants.

19.
World Neurosurg ; 178: 93-95, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37482089

RESUMEN

BACKGROUND: Intracranial pressure (ICP) management based on predetermined thresholds is not accurate in light of recent research on cerebrovascular physiology. Interpersonal and intrapersonal variations will lead ICP elevations to reach individualized thresholds for intracranial compliance impairment from one subject to another. Therefore reuniting the modern techniques of neuromonitoring besides ICP enables practitioners to have a more whole picture in anticipating neuro worsening and improving timing in decision making. METHODS: Brief literature review. RESULTS: For the severely brain-injured patient, current evidence indicates a personalized and physiology-based multimodal monitoring care to be required rather than decision making according to ICP predetermined cut-offs. CONCLUSIONS: The authors' point of view is of particular importance for regions with resource heterogeneity and scarcity, where ICP monitoring is not available for all those in need and noninvasive techniques may provide a surrogate approach. If physicians who deal with acute-brain-injured patients in lower-resource areas understand that several tools besides ICP may improve their practice, it is possible to reduce acute brain injury morbimortality.


Asunto(s)
Lesiones Encefálicas , Hipertensión Intracraneal , Humanos , Encéfalo , Circulación Cerebrovascular , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal/fisiología , Monitoreo Fisiológico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA