Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Biol Macromol ; 275(Pt 1): 133441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955302

RESUMEN

To improve the techno-functional properties of rapeseed protein (RP), this work tried to regulate the molecular structure of RP via inducing the co-assembly of RP with zein and whey protein (WP). The results showed that WP and zein mainly regulate the folding process of RP through hydrophobic and disulfide bonds, thereby altering the structural conformation and forming stable complex RP (CRP). WP addition not only increased the number of surface charges and hydrophilicity of proteins, but also decreased their sizes, improved the water solubility, as well as the availability of active groups. These changes significantly increased the foaming capacity (from 60 % to 147 %) and in vitro gastric digestion rate (from 10 % to 60 %) of CRP. Besides, WP also contributed to the formation of gels and the regulation of their textural profiles. Comparatively, zein improved the hydrophobicity of CRP and balanced degree of intermolecular forces, which effectively increased the emulsifying activity index of CRP from 22 m2/g to 90 m2/g. Zein decreased the hardness, springiness and water-holding capacity of gel, but increased its gumminess and chewiness. Overall, both WP and zein effectively changed the structural conformation of RP, and improved its techno-functional properties, which provides an effective strategy to modify protein.


Asunto(s)
Brassica rapa , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Solubilidad , Proteína de Suero de Leche , Zeína , Proteínas de Plantas/química , Zeína/química , Brassica rapa/química , Proteína de Suero de Leche/química , Agua/química
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38928011

RESUMEN

Adipose tissue is conventionally recognized as a metabolic organ responsible for storing energy. However, a proportion of adipose tissue also functions as a thermogenic organ, contributing to the inhibition of weight gain and prevention of metabolic diseases. In recent years, there has been significant progress in the study of thermogenic fats, particularly brown adipose tissue (BAT). Despite this progress, the mechanism underlying thermogenesis in beige adipose tissue remains highly controversial. It is widely acknowledged that beige adipose tissue has three additional thermogenic mechanisms in addition to the conventional UCP1-dependent thermogenesis: Ca2+ cycling thermogenesis, creatine substrate cycling thermogenesis, and triacylglycerol/fatty acid cycling thermogenesis. This paper delves into these three mechanisms and reviews the latest advancements in the molecular regulation of thermogenesis from the molecular genetic perspective. The objective of this review is to provide readers with a foundation of knowledge regarding the beige fats and a foundation for future research into the mechanisms of this process, which may lead to the development of new strategies for maintaining human health.


Asunto(s)
Adipocitos Beige , Termogénesis , Termogénesis/genética , Humanos , Adipocitos Beige/metabolismo , Animales , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo Pardo/metabolismo , Metabolismo Energético , Calcio/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Tejido Adiposo Beige/metabolismo
3.
EXCLI J ; 23: 570-599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887390

RESUMEN

Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).

4.
Artículo en Inglés | MEDLINE | ID: mdl-38761210

RESUMEN

Since prostate cancer is one of the leading causes of cancer-related death, a better understanding of the molecular pathways guiding its development is imperative. A key factor in prostate cancer is autophagy, a cellular mechanism that affects both cell survival and death. Autophagy is essential in maintaining cellular homeostasis. Autophagy is a physiological mechanism wherein redundant or malfunctioning cellular constituents are broken down and recycled. It is essential for preserving cellular homeostasis and is implicated in several physiological and pathological conditions, including cancer. Autophagy has been linked to metastasis, tumor development, and treatment resistance in prostate cancer. The deregulation of miRNAs related to autophagy appears to be a crucial element in the etiology of prostate cancer. These miRNAs influence the destiny of cancer cells by finely regulating autophagic mechanisms. Numerous investigations have emphasized the dual function of specific miRNAs in prostate cancer, which alter autophagy-related pathways to function as either tumor suppressors or oncogenes. Notably, miRNAs have been linked to the control of autophagy and the proliferation, apoptosis, and migration of prostate cancer cells. To create customized therapy approaches, it is imperative to comprehend the dynamic interplay between autophagy and miRNAs in prostate cancer. The identification of key miRNAs provides potential diagnostic and prognostic markers. Unraveling the complex network of lncRNAs, like PCA3, also expands the repertoire of molecular targets for therapeutic interventions. This review explores the intricate interplay between autophagy and miRNAs in prostate cancer, focusing on their regulatory roles in cellular processes ranging from survival to programmed cell death.

5.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649645

RESUMEN

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT , Traumatismos de la Médula Espinal , Ubiquitina-Proteína Ligasas , Animales , Traumatismos de la Médula Espinal/fisiopatología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ratones , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Actividad Motora/fisiología , Ratones Endogámicos C57BL , Recuperación de la Función/fisiología , Femenino , Médula Espinal/metabolismo , Médula Espinal/patología , Regulación de la Expresión Génica
6.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674136

RESUMEN

Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.


Asunto(s)
Productos Agrícolas , Grano Comestible , Melatonina , Estrés Fisiológico , Melatonina/metabolismo , Melatonina/farmacología , Grano Comestible/metabolismo , Grano Comestible/genética , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Sequías , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
7.
J Colloid Interface Sci ; 665: 772-779, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554467

RESUMEN

Effectively managing oxygen-containing functional groups (OCFGs) within activated carbon and methodically elucidating their intricate types and proportions are essential for considerably improving the electrochemical performance of carbon-based supercapacitors. Herein, we designed a ZnCl2-based molecular regulation strategy to introduce OCFGs into ramie-activated carbon (RAC), managing different OCFGs and revealing their structure-activity relationship with electrochemical performance. Thus, this regulated RAC, with a 3.5-fold enhancement in advantageous OCFGs (a-OCFGs: CO and COO), exhibits a supreme specific capacitance of 286.4F g-1 at 1 A/g and an excellent capacitance retention rate of 89.7 % at 20 A/g in an aqueous electrolyte, considerably surpassing that of nonregulated RAC (212.0F g-1 and 81.9 %). This confirms that a-OCFGs provide ample ion-storage accommodation and suppress solvent electronic oxidation, thereby enhancing electrochemical performance. Furthermore, its electrochemical performance is competitive with that of the commercial YP-50F (129.2F g-1 at 1 A/g). Therefore, this work not only highlights the contributions of specific OCFGs to high electrochemical performance but also designs a promising commercial electrode material to meet the demands of OCFGs-adequate carbon-based energy storage devices.

8.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396834

RESUMEN

The periosteum is known as the thin connective tissue covering most bone surfaces. Its extrusive bone regeneration capacity was confirmed from the very first century-old studies. Recently, pluripotent stem cells in the periosteum with unique physiological properties were unveiled. Existing in dynamic contexts and regulated by complex molecular networks, periosteal stem cells emerge as having strong capabilities of proliferation and multipotential differentiation. Through continuous exploration of studies, we are now starting to acquire more insight into the great potential of the periosteum in bone formation and repair in situ or ectopically. It is undeniable that the periosteum is developing further into a more promising strategy to be harnessed in bone tissue regeneration. Here, we summarized the development and structure of the periosteum, cell markers, and the biological features of periosteal stem cells. Then, we reviewed their pivotal role in bone repair and the underlying molecular regulation. The understanding of periosteum-related cellular and molecular content will help enhance future research efforts and application transformation of the periosteum.


Asunto(s)
Regeneración Ósea , Periostio , Regeneración Ósea/fisiología , Osteogénesis/fisiología , Células Madre , Diferenciación Celular , Ingeniería de Tejidos
9.
Plants (Basel) ; 13(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337941

RESUMEN

Light provides seeds with information that is essential for the adjustment of their germination to the conditions that are most favorable for the successful establishment of the future seedling. The promotion of germination depends mainly on environmental factors, like temperature and light, as well as internal factors associated with the hormonal balance between gibberellins (GA) and abscisic acid (ABA), although other hormones such as auxins may act secondarily. While transcriptomic studies of light-germinating Arabidopsis thaliana seeds suggest that auxins and auxin transporters are necessary, there are still no functional studies connecting the activity of the auxin transporters in light-induced seed germination. In this study, we investigated the roles of two auxin efflux carrier (PIN3 and PIN7) proteins and one auxin influx (AUX1) carrier protein during Arabidopsis thaliana seed germination. By using next-generation sequencing (RNAseq), gene expression analyses, hormonal sensitivity assays, and the quantification of indole-3-acetic acid (IAA) levels, we assessed the functional roles of PIN3, PIN7, and AUX1 during light-induced seed germination. We showed that auxin levels are increased 24 h after a red-pulse (Rp). Additionally, we evaluated the germination responses of pin3, pin7, and aux1 mutant seeds and showed that PIN3, PIN7, and AUX1 auxin carriers are important players in the regulation of seed germination. By using gene expression analysis in water, fluridone (F), and ABA+F treated seeds, we confirmed that Rp-induced seed germination is associated with auxin transport, and ABA controls the function of PIN3, PIN7, and AUX1 during this process. Overall, our results highlight the relevant and positive role of auxin transporters in germinating the seeds of Arabidopsis thaliana.

10.
Int J Biol Macromol ; 260(Pt 2): 129600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266849

RESUMEN

Novel biomedical materials provide a new horizon for the diagnosis/treatment of diseases and tissue repair in medical engineering. As the most abundant biomass polymer on earth, cellulose is characterized by natural biocompatibility, good mechanical properties, and structure-performance designability. Owing to these outstanding features, cellulose as a biomacromolecule can be designed as functional biomaterials via hydrogen bonding (H-bonding) interaction or chemical modification for human tissue repair, implantable tissue organs, and controlling drug release. Moreover, cellulose can also be used to construct medical sensors for monitoring human physiological signals. In this study, the structural characteristics, functionalization approaches, and advanced biomedical applications of cellulose are reviewed. The current status and application prospects of cellulose and its functional materials for wound dressings, drug delivery, tissue engineering, and electronic skin (e-skin) are discussed. Finally, the key technologies and methods used for designing cellulosic biomaterials and broadening their application prospects in biomedical fields are highlighted.


Asunto(s)
Materiales Biocompatibles , Celulosa , Humanos , Materiales Biocompatibles/química , Celulosa/química , Ingeniería de Tejidos , Prótesis e Implantes , Hidrogeles/química
11.
Bioact Mater ; 33: 572-590, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111651

RESUMEN

A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.

12.
J Environ Manage ; 351: 119913, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154222

RESUMEN

The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.


Asunto(s)
Nanotubos de Carbono , Rhodopseudomonas , Aguas Residuales , Plata , Colorantes/metabolismo , Titanio , Biodegradación Ambiental , Compuestos Azo , Catálisis
13.
Plants (Basel) ; 12(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38068655

RESUMEN

Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.

14.
Trends Plant Sci ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042677

RESUMEN

Climate changes have unpredictable effects on ecosystems and agriculture. Plants adapt metabolically to overcome these challenges, with plant secondary metabolites (PSMs) being crucial for plant-environment interactions. Thus, understanding how PSMs respond to climate change is vital for future cultivation and breeding strategies. Here, we review PSM responses to climate changes such as elevated carbon dioxide, ozone, nitrogen deposition, heat and drought, as well as a combinations of different factors. These responses are complex, depending on stress dosage and duration, and metabolite classes. We finally identify mechanisms by which climate change affects PSM production ecologically and molecularly. While these observations provide insights into PSM responses to climate changes and the underlying regulatory mechanisms, considerable further research is required for a comprehensive understanding.

15.
Crit Rev Biotechnol ; : 1-18, 2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38105513

RESUMEN

Fungal α/ß-glucans have significant importance in cellular functions including cell wall structure, host-pathogen interactions and energy storage, and wide application in high-profile fields, including food, nutrition, and pharmaceuticals. Fungal species and their growth/developmental stages result in a diversity of glucan contents, structures and bioactivities. Substantial progresses have been made to elucidate the fine structures and functions, and reveal the potential molecular synthesis pathway of fungal α/ß-glucans. Herein, we review the current knowledge about the biosynthetic machineries, including: precursor UDP-glucose synthesis, initiation, elongation/termination and remodeling of α/ß-glucan chains, and molecular regulation to maximally produce glucans in edible fungi. This review would provide future perspectives to biosynthesize the targeted glucans and reveal the catalytic mechanism of enzymes associated with glucan synthesis, including: UDP-glucose pyrophosphate phosphorylases (UGP), glucan synthases, and glucanosyltransferases in edible fungi.

16.
Biomolecules ; 13(12)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38136596

RESUMEN

Terpenoids are the broadest and richest group of chemicals obtained from plants. These plant-derived terpenoids have been extensively utilized in various industries, including food and pharmaceuticals. Several specific terpenoids have been identified and isolated from medicinal plants, emphasizing the diversity of biosynthesis and specific functionality of terpenoids. With advances in the technology of sequencing, the genomes of certain important medicinal plants have been assembled. This has improved our knowledge of the biosynthesis and regulatory molecular functions of terpenoids with medicinal functions. In this review, we introduce several notable medicinal plants that produce distinct terpenoids (e.g., Cannabis sativa, Artemisia annua, Salvia miltiorrhiza, Ginkgo biloba, and Taxus media). We summarize the specialized roles of these terpenoids in plant-environment interactions as well as their significance in the pharmaceutical and food industries. Additionally, we highlight recent findings in the fields of molecular regulation mechanisms involved in these distinct terpenoids biosynthesis, and propose future opportunities in terpenoid research, including biology seeding, and genetic engineering in medicinal plants.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/genética , Terpenos/química , Ingeniería Genética , Extractos Vegetales
17.
Genome Biol ; 24(1): 265, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996937

RESUMEN

BACKGROUND: "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes. RESULTS: We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate. CONCLUSIONS: Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Humanos , Dinoflagelados/genética , Multiómica , Genómica , Respuesta al Choque Térmico
18.
Front Cell Dev Biol ; 11: 1174579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818127

RESUMEN

Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.

19.
Cancers (Basel) ; 15(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686541

RESUMEN

Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37689170

RESUMEN

Nuclear factor E2-associated factor 2 (Nrf2)/Antioxidant Response Element (ARE) signaling pathway is an endogenous antioxidant pathway that protects cells from oxidative damage. This pathway is triggered when aquatic organisms are exposed to environmental toxicants. In this study, CpMafK (musculoaponeurotic fibrosarcoma K of Cristaria plicata) mRNA expression in hepatopancreas and gills were up regulated after Cristaria plicata (C. plicata) was exposed to microcystin (MC), which showed that CpMafK protected C. plicata from MC. After MC treatment and CpNrf2 (Nrf2 of Cristaria plicata) knockdown, the mRNA expression of CpMafK was down regulated. After MC treatment and CpMafK knockdown, the mRNA expression of CpNrf2 was down regulated. Indicating that the expression of CpNrf2 was positively correlated with CpMafK. CpGPx (GPx of Cristaria plicata) mRNA was also down regulated with the down regulation of CpMafK and CpNrf2. CpGPx promoter contains a variety of transcription factor binding sites, including Nrf2, ARE elements, etc. Gel blocking experiments showed that CpNrf2/CpMafK heterodimers were bound to CpGPx promoters in vitro. Dual luciferase reporter assay showed that CpNrf2/CpMafK heterodimer negatively regulated CpGPx promoter in cells. In conclusion, Nrf2 and MafK mediate regulation of GPx play a crucial role in protecting bivalves from MC.


Asunto(s)
Fibrosarcoma , Microcistinas , Animales , Microcistinas/toxicidad , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Glutatión Peroxidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA