Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
1.
Oral Radiol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251497

RESUMEN

OBJECTIVES: This study aimed to evaluate the reliability and accuracy of an intraoral ultrasound (US) device to evaluate alveolar bone by comparing it between different raters and to microCT (µCT) measurements. METHODS: 38 teeth distributed across three human cadavers were prepared by placing two notches on the facial enamel surface. The maxillary and mandibular teeth were imaged with a custom-designed intraoral 20 MHz ultrasound and µCT with 0.03 mm voxel size. µCT was considered the reference standard for this study. For each sample, the distance from the inferior border of the most apical notch to the tip of the alveolar bone crest on the facial aspect of the teeth was measured from the US and µCT images. Intraclass correlation coefficient (ICC) and standard deviation were calculated. RESULTS: The intra-examiner and inter-examiner reliability for both the µCT and US alveolar bone measurements were found to be excellent (intra-examiner ICC was 0.998 for µCT and 0.997 for US, inter-examiner ICC was 0.996 for µCT and between 0.947 and 0.950 for US). The accuracy of the US was found to be good compared to µCT (ICC between 0.885 and 0.894). CONCLUSION: The study demonstrated that intraoral ultrasound is highly reliable and accurate compared to the µCT reference standard for evaluating facial alveolar bone height.

2.
Sci Rep ; 14(1): 20499, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227377

RESUMEN

Imaging the internal architecture of fast-vibrating structures at micrometer scale and kilohertz frequencies poses great challenges for numerous applications, including the study of biological oscillators, mechanical testing of materials, and process engineering. Over the past decade, X-ray microtomography with retrospective gating has shown very promising advances in meeting these challenges. However, breakthroughs are still expected in acquisition and reconstruction procedures to keep improving the spatiotemporal resolution, and study the mechanics of fast-vibrating multiscale structures. Thereby, this works aims to improve this imaging technique by minimising streaking and motion blur artefacts through the optimisation of experimental parameters. For that purpose, we have coupled a numerical approach relying on tomography simulation with vibrating particles with known and ideal 3D geometry (micro-spheres or fibres) with experimental campaigns. These were carried out on soft composites, imaged in synchrotron X-ray beamlines while oscillating up to 400 Hz, thanks to a custom-developed vibromechanical device. This approach yields homogeneous angular sampling of projections and gives reliable predictions of image quality degradation due to motion blur. By overcoming several technical and scientific barriers limiting the feasibility and reproducibility of such investigations, we provide guidelines to enhance gated-CT 4D imaging for the analysis of heterogeneous, high-frequency oscillating materials.

3.
Sci Rep ; 14(1): 19226, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39160323

RESUMEN

Consensus holds that pottery technology came to Central Europe from the Northern Balkans with independent pottery traditions existing concurrently in Eastern Europe. An unusual grass-tempered pottery dating back to around 5800 cal BC found in lake sediments at Santovka, Slovakia, predated the earliest known Neolithic pottery in the region (~ 5500 cal BC), suggesting unexplored narratives of pottery introduction. Analyses of the pottery's technology, origin, and grass temper shedding light on ceramic traditions' spread can unveil mobility patterns and community lifestyles. Our findings indicate a non-local provenance, low temperature firing, Festugc sp. grass temper and unique rectangular or cylindrical vessel shapes which align with Eastern European hunter-gatherer practices. Moreover, the pottery style and technology have no analogies in the contemporary Danubian pottery traditions and have more similarities to those of the Eastern traditions. The pottery's raw materials likely originated from distant areas, indicating extensive territorial access for its creators. Our findings imply late Mesolithic hunter-gatherers as the probable artisans and with implications for the site's significance in the late Mesolithic landscape.

4.
J Dent Res ; 103(9): 916-925, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39101670

RESUMEN

Evidence concerning the osteotoxic effects of chemotherapy (doxorubicin) has been previously described. Periodontitis also progressively increases in patients receiving chemotherapy; however, the beneficial effects of melatonin and metformin on the alleviation of doxorubicin-induced osteotoxicity have never been investigated. Therefore, we investigated the negative impact of doxorubicin on alveolar bone homeostasis and the benefits of melatonin and metformin on the attenuation of doxorubicin-induced alveolar bone toxicity. Male Wistar rats were divided into 4 groups to receive either 1 mL of normal saline solution as a control group, 3 mg/kg of doxorubicin, 3 mg/kg of doxorubicin plus 10 mg/kg of melatonin, or 3 mg/kg of doxorubicin plus 250 mg/kg of metformin. Doxorubicin treatment was given on days 0, 4, 8, 15, 22, and 29, while interventions were given daily on days 0 to 29. Following euthanasia, blood and alveolar bones were collected for evaluation of oxidative stress, bone remodeling, inflammation, microarchitecture, and periodontal condition. We found that doxorubicin increased systemic oxidative stress, decreased antioxidative capacity, increased inflammation, decreased bone formation, increased bone reabsorption, impaired microarchitecture, and impaired periodontal condition of the alveolar bone. Although cotreatment with melatonin or metformin resulted in some improvement in these parameters, cotreatment with melatonin was more effective than cotreatment with metformin in terms of decreasing oxidative stress, reducing bone resorption, and improving microarchitecture and periodontal condition. All of these findings highlight the potential for antioxidants, especially melatonin, to ameliorate doxorubicin-induced alveolar bone toxicity.


Asunto(s)
Pérdida de Hueso Alveolar , Proceso Alveolar , Antioxidantes , Doxorrubicina , Melatonina , Metformina , Estrés Oxidativo , Ratas Wistar , Melatonina/farmacología , Melatonina/uso terapéutico , Animales , Metformina/farmacología , Metformina/uso terapéutico , Doxorrubicina/toxicidad , Masculino , Ratas , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Pérdida de Hueso Alveolar/prevención & control , Proceso Alveolar/efectos de los fármacos , Antibióticos Antineoplásicos/toxicidad , Remodelación Ósea/efectos de los fármacos , Microtomografía por Rayos X
5.
Sci Rep ; 14(1): 19696, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181927

RESUMEN

The larvae of Neuroptera are predators that feed by injecting bioactive compounds into their prey and then suctioning the fluids through modified mouthparts. We explore the evolutionary history of this feeding structure through the examination of a new fossil larva preserved in Late Cretaceous Kachin amber, which we describe as new genus and species, Electroxipheus veneficus gen et sp. nov. X-ray phase-contrast microtomography enabled us to study the anatomy of the larva in 3D, including the structure of the mouthparts and that of the venom delivery system. The specimen exhibited a unique combination of morphological traits not found in any known fossil or extant lacewing, including an unusual structure of the antenna. Phylogenetic analyses, incorporating a selection of living and fossil larval Neuroptera and enforcing maximum parsimony and Bayesian inference, identified the larva as belonging to the stem group Mantispoidea. The larva shows that the anatomy of the feeding and venom-delivery apparatus has remained unchanged in Neuroptera from the Cretaceous to the present. The morphology of the specimen suggests that it was an active predator, in contrast with the scarcely mobile, specialized relatives, like mantispids and berothids.


Asunto(s)
Ámbar , Fósiles , Insectos , Larva , Filogenia , Animales , Larva/anatomía & histología , Insectos/anatomía & histología , Insectos/clasificación , Evolución Biológica , Microtomografía por Rayos X , Ponzoñas/genética
6.
Front Vet Sci ; 11: 1424890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091385

RESUMEN

Introduction: Equine trigeminal-mediated headshaking is a painful neuropathic disorder comparable to trigeminal neuralgia in humans. The selective destruction of pain fibers within the trigeminal ganglion, called rhizotomy, is the surgical treatment of choice for idiopathic trigeminal neuralgia refractory to medical treatment in humans. The human trigeminal ganglion is enclosed by a dural recess called the Meckel's or trigeminal cave, in which the ganglion is surrounded by a cerebrospinal fluid (CSF)-filled subarachnoid space. During glycerol rhizotomy, glycerol is percutaneously injected in this CSF-filled space. Until now, information about the anatomy of the dural recess and the subarachnoid space surrounding the trigeminal ganglion is lacking in horses. The aim of this study was to explore if a CSF-filled subarachnoid space around the trigeminal ganglion exists in horses. Materials and methods: Six equine cadaver heads were investigated for CSF accumulation around the ganglion with a 3 Tesla MRI. After anatomical dissection to expose the trigeminal root, a polymer-based radiopaque contrast agent was injected through the porus trigeminus into the subarachnoid space (cisternography). The exact delineation and the volume of the contrast agent accumulation were determined on subsequent micro-computed tomographic scans and segmentation. Finally, the distribution of the contrast agent within the subarachnoid space was examined histologically in three specimens. Results: In all 12 specimens included in this study, the trigeminal ganglion was surrounded by a subarachnoid space forming a trigeminal cistern. The mean volume of the trigeminal cave in this study was 0.31 mL (±SD: 0.11 mL). Distribution of the contrast agent along the peripheral nerves (i.e., ophthalmic, maxillary and/or mandibular nerve) was observed in 7 out of 12 specimens. Discussion/conclusion: A subarachnoid space surrounding the trigeminal ganglion exists in the horse and could be targeted for glycerol rhizotomy in horses suffering from trigeminal-mediated headshaking. However, the clinical relevance of contrast agent distribution along the peripheral nerves remains to be assessed.

7.
J Dent Res ; : 220345241262949, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101558

RESUMEN

Endodontic access preparation is one of the initial steps in root canal treatments and can be hindered by the obliteration of pulp canals and formation of tertiary dentin. Until now, methods for direct intraoperative visualization of the 3-dimensional anatomy of teeth have been missing. Here, we evaluate the use of shortwave infrared radiation (SWIR) for navigation during stepwise access preparation. Nine teeth (3 anteriors, 3 premolars, and 3 molars) were explanted en bloc with intact periodontium including alveolar bone and mucosa from the upper or lower jaw of human body donors. Analysis was performed at baseline as well as at preparation depths of 5 mm, 7 mm, and 9 mm, respectively. For reflection, SWIR was used at a wavelength of 1,550 nm from the occlusal direction, whereas for transillumination, SWIR was passed through each sample at the marginal gingiva from the buccal as well as oral side at a wavelength of 1,300 nm. Pulpal structures could be identified as darker areas approximately 2 mm before reaching the pulp chamber using SWIR transillumination, although they were indistinguishable under normal circumstances. Furcation areas in molars appeared with higher intensity than areas with canals. The location of pulpal structures was confirmed by superimposition of segmented micro-computed tomography (µCT) images. By radiomic analysis, significant differences between pulpal and parapulpal areas could be detected in image features. With hierarchical cluster analysis, both segments could be confirmed and associated with specific clusters. The local thickness of µCTs was calculated and correlated with SWIR transillumination images, by which a linear dependency of thickness and intensity could be demonstrated. Lastly, by in silico simulations of light propagation, dentin tubules were shown to be a crucial factor for understanding the visibility of the pulp. In conclusion, SWIR transillumination may allow direct clinical live navigation during endodontic access preparation.

8.
Dent Res J (Isfahan) ; 21: 33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188394

RESUMEN

Background: Optimal dimensional stability is required for successful root canal treatment. A sealant called EndoSeal mineral trioxide aggregate (MTA) was recently introduced to the market due to its favorable physical and chemical properties. On the other hand, AH Plus (AHP) is considered the gold-standard seal. Materials and Methods: In this ex vivo quasi-experimental study, 24 single-canal premolars extracted from humans were cleaned and shaped with a motorized and rotary file, then that is divided into two groups. The teeth of each group were filled with gutta F3 and each type of sealant. The teeth were scanned by a micro-computed tomography device after 24 h. After 7 days of storage in phosphate-buffered saline solution, the samples were re-scanned. Data were analyzed using SPSS software (version 21). Descriptive data were presented as frequency, percentage, mean, and standard deviation. The Shapiro-Wilk and Kolmogorov-Smirnov tests were used to investigate the normality of the data. The Mann-Whitney test was used to compare the two groups, and the differences were ultimately not significant. The level of significance was set at 0.05 (P < 0.05). Results: The mean differences between sealer volumes before and after the intervention were not significantly different between the two groups indicating that the EndoSeal MTA sealer is not inferior to the gold-standard root canal sealer, AHP. Conclusion: EndoSeal MTA can be considered a reliable sealer in endodontic treatments and be subjected to further investigation.

9.
Res Sq ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39149507

RESUMEN

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). Methods: We examined three fresh-frozen temporal bones (TB) using dynamic synchrotron-based X-ray microtomography for 256 Hz and 512 Hz, stimulated at 110 dB and 120 dB SPL. In addition, we performed measurements on these TBs using 1D LDV, a well-established method. Results: The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. Conclusion: In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.

10.
Sci Total Environ ; 948: 174875, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39029753

RESUMEN

The massive extraction of virgin raw materials has substantially intensified the focus on circular economy of building materials. As a Cradle-to-Cradle service life and circular approach for lime-based construction materials (LBCM) is lacking, the present study evaluates the environmental impact and feasibility of creating a fully recycled second-life render (SL) by designing a closed-loop upcycling process for first-life renders (FL). To achieve this, a second-life binder was thermally activated (900, 1000, 1100, 1200 °C), while its microstructure, compressive strength, and thermal conductivity were investigated. SL had up to 33 % open porosity (FL 29 %), its compressive strength ranged from 2.5 to 3.4 MPa (FL 4.4 MPa) and the thermal conductivity from 1.002 to 1.107 W/mK (FL 1.231 W/mK). Resistance of SL and FL against sulfate attack was found to be equivalent, measured based on the recent RILEM TC 271-ASC recommendation. The environmental impact indicators integrating material properties and durability confirm that the second life-render can reduce CO2 emissions up to 55 %. The present research provides insights into unlocking essential sustainability gains through circular practices in the life-cycle of LBCM.

11.
J Synchrotron Radiat ; 31(Pt 5): 1346-1357, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007824

RESUMEN

The Biomedical Imaging and Therapy facility of the Canadian Light Source comprises two beamlines, which together cover a wide X-ray energy range from 13 keV up to 140 keV. The beamlines were designed with a focus on synchrotron applications in preclinical imaging and veterinary science as well as microbeam radiation therapy. While these remain a major part of the activities of both beamlines, a number of recent upgrades have enhanced the versatility and performance of the beamlines, particularly for high-resolution microtomography experiments. As a result, the user community has been quickly expanding to include researchers in advanced materials, batteries, fuel cells, agriculture, and environmental studies. This article summarizes the beam properties, describes the endstations together with the detector pool, and presents several application cases of the various X-ray imaging techniques available to users.


Asunto(s)
Sincrotrones , Canadá , Rayos X , Animales , Humanos , Diseño de Equipo , Tomografía Computarizada por Rayos X/métodos
13.
Biology (Basel) ; 13(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056666

RESUMEN

This study evaluated the bone incorporation process of a screw-shaped internal fixation device made of poly (L-lactide-co-D, L-lactide) (PLDLLA). Thirty-two male Wistar rats received 32 fixation devices (2 mm × 6 mm) randomly assigned to either the right or left tibia and one implant in each animal. After 7, 14, 28, and 42 days, the rats were euthanized and the specimens were subjected to microtomographic computed tomography (microCT) and histomorphometric analyses to evaluate bone interface contact (BIC%) and new bone formation (NBF%) in cortical and cancellous bone areas. The animals euthanized on days 28 and 42 were treated with calcein and alizarin red, and confocal LASER microscopy was performed to determine the mineral apposition rate (MAR). Micro-CT revealed a higher percentage of bone volume (p < 0.006), trabecular separation (p < 0.001), and BIC in the cortical (p < 0.001) and cancellous (p = 0.003) areas at 28 and 42 days than at 7 and 14 days. The cortical NBF at 42 days was greater than that at 7 and 14 days (p = 0.022). No statistically significant differences were observed in cancellous NBF or MAR at 28 and 42 days. Based on these results, it can be seen that the PLDLLA internal fixation device is biocompatible and allows new bone formation around the screw thread.

14.
Sci Rep ; 14(1): 14329, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907041

RESUMEN

A comprehensive grasp of the myocardial micro-architecture is essential for understanding diverse heart functions. This study aimed to investigate three-dimensional (3D) cardiomyocyte arrangement in the laminar structure using X-ray phase-contrast microtomography. Using the ID-19 beamline at the European Synchrotron Radiation Facility, we imaged human left ventricular (LV) wall transparietal samples and reconstructed them with an isotropic voxel edge length of 3.5 µm. From the reconstructed volumes, we extracted different regions to analyze the orientation distribution of local cardiomyocyte aggregates, presenting findings in terms of helix and intrusion angles. In regions containing one sheetlet population, we observed cardiomyocyte aggregates running along the local LV wall's radial direction at the border of sheetlets, branching and merging into a complex network around connecting points of different sheetlets, and bending to accommodate vessel passages. In regions with two sheetlet populations, the helix angle of local cardiomyocyte aggregates experiences a nonmonotonic change, and some cardiomyocyte aggregates run along the local radial direction. X-ray phase-contrast microtomography is a valuable technique for investigating the 3D local myocardial architecture at microscopic level. The arrangement of local cardiomyocyte aggregates in the LV wall proves to be both regional and complex, intricately linked to the local laminar structure.


Asunto(s)
Ventrículos Cardíacos , Imagenología Tridimensional , Miocitos Cardíacos , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Humanos , Miocitos Cardíacos/citología , Imagenología Tridimensional/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Miocardio/citología
15.
Polymers (Basel) ; 16(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794534

RESUMEN

In this study, digital light processing (DLP) was utilized to generate 3D-printed blends composed of photosensitive acrylate-modified polylactic acid (PLA) resin mixed with varying weight ratios of lignin extracted from softwood, typically ranging from 5 wt% to 30 wt%. The microstructure of these 3D-printed blends was examined through X-ray microtomography. Additionally, the tensile mechanical properties of all blends were assessed in relation to the weight ratio and post-curing treatment. The results suggest that post-curing significantly influences the tensile properties of the 3D-printed composites, especially in modulating the brittleness of the prints. Furthermore, an optimal weight ratio was identified to be around 5 wt%, beyond which UV light photopolymerization experiences compromises. These findings regarding acrylate-modified PLA/lignin blends offer a cost-effective alternative for producing 3D-printed bio-sourced components, maintaining technical performance in reasonable-cost, low-temperature 3D printing, and with a low environmental footprint.

16.
Eur Radiol Exp ; 8(1): 58, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38735899

RESUMEN

BACKGROUND: Chondrosarcomas are rare malignant bone tumors diagnosed by analyzing radiological images and histology of tissue biopsies and evaluating features such as matrix calcification, cortical destruction, trabecular penetration, and tumor cell entrapment. METHODS: We retrospectively analyzed 16 cartilaginous tumor tissue samples from three patients (51-, 54-, and 70-year-old) diagnosed with a dedifferentiated chondrosarcoma at the femur, a moderately differentiated chondrosarcoma in the pelvis, and a predominantly moderately differentiated chondrosarcoma at the scapula, respectively. We combined a hematein-based x-ray staining with high-resolution three-dimensional (3D) microscopic x-ray computed tomography (micro-CT) for nondestructive 3D tumor assessment and tumor margin evaluation. RESULTS: We detected trabecular entrapment on 3D micro-CT images and followed bone destruction throughout the volume. In addition to staining cell nuclei, hematein-based staining also improved the visualization of the tumor matrix, allowing for the distinction between the tumor and the bone marrow cavity. The hematein-based staining did not interfere with further conventional histology. There was a 5.97 ± 7.17% difference between the relative tumor area measured using micro-CT and histopathology (p = 0.806) (Pearson correlation coefficient r = 0.92, p = 0.009). Signal intensity in the tumor matrix (4.85 ± 2.94) was significantly higher in the stained samples compared to the unstained counterparts (1.92 ± 0.11, p = 0.002). CONCLUSIONS: Using nondestructive 3D micro-CT, the simultaneous visualization of radiological and histopathological features is feasible. RELEVANCE STATEMENT: 3D micro-CT data supports modern radiological and histopathological investigations of human bone tumor specimens. It has the potential for being an integrative part of clinical preoperative diagnostics. KEY POINTS: • Matrix calcifications are a relevant diagnostic feature of bone tumors. • Micro-CT detects all clinically diagnostic relevant features of x-ray-stained chondrosarcoma. • Micro-CT has the potential to be an integrative part of clinical diagnostics.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Estudios de Factibilidad , Imagenología Tridimensional , Microtomografía por Rayos X , Humanos , Condrosarcoma/diagnóstico por imagen , Condrosarcoma/patología , Microtomografía por Rayos X/métodos , Anciano , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/patología , Persona de Mediana Edad , Estudios Retrospectivos , Imagenología Tridimensional/métodos , Masculino , Femenino , Coloración y Etiquetado/métodos
17.
Dent Mater ; 40(6): 930-940, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38724334

RESUMEN

OBJECTIVES: An increasing number of CAD/CAM (computer-aided design/computer-aided manufacturing) hybrid materials have been introduced to the dental market in recent years. In addition, CAD/CAM hybrid materials for additive manufacturing (AM) are becoming more attractive in digital dentistry. Studies on material microstructures using micro-computed tomography (µ-CT) combined with scanning electron microscopy (SEM) have only been available to a limited extent so far. METHODS: One CAD/CAM three-dimensional- (3D-) printable hybrid material (VarseoSmile Crown plus) and two CAD/CAM millable hybrid materials (Vita Enamic; Voco Grandio), as well as one direct composite material (Ceram.x duo), were included in the present study. Cylindrical samples with a diameter of 2 mm were produced from each material and investigated by means of synchrotron radiation µ-CT at a voxel size of 0.65 µm. Different samples from the same materials, obtained by cutting and polishing, were investigated by SEM. RESULTS: The 3D-printed hybrid material showed some agglomerations and a more irregular distribution of fillers, as well as a visible layered macrostructure and a few spherical pores due to the printing process. The CAD/CAM millable hybrid materials revealed a more homogenous distribution of ceramic particles. The direct composite material showed multiple air bubbles and microstructural irregularities based on manual processing. SIGNIFICANCE: The µ-CT and SEM analysis of the materials revealed different microstructures even though they belong to the same class of materials. It could be shown that µ-CT and SEM imaging are valuable tools to understand microstructure and related mechanical properties of materials.


Asunto(s)
Diseño Asistido por Computadora , Materiales Dentales , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Microtomografía por Rayos X , Materiales Dentales/química , Resinas Compuestas/química , Impresión Tridimensional , Cerámica/química
18.
Environ Sci Technol ; 58(23): 10084-10094, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38816987

RESUMEN

The preservation of soil organic carbon (OC) is an effective way to decelerate the emission of CO2 emission. However, the coregulation of pore structure and mineral composition in OC stabilization remains elusive. We employed the in situ nondestructive oxidation of OC by low-temperature ashing (LTA) combined with near edge X-ray absorption fine structure (NEXAFS), high-resolution microtomography (µ-CT), field emission electron probe microanalysis (FE-EPMA) with C-free embedding, and novel Cosine similarity measurement to investigate the C retention in different aggregate fractions of contrasting soils. Pore structure and minerals contributed equally (ca. 50%) to OC accumulation in macroaggregates, while chemical protection played a leading role in C retention with 53.4%-59.2% of residual C associated with minerals in microaggregates. Phyllosilicates were discovered to be more prominent than Fe (hydr)oxides in C stabilization. The proportion of phyllosilicates-associated C (52.0%-61.9%) was higher than that bound with Fe (hydr)oxides (45.6%-55.3%) in all aggregate fractions tested. This study disentangled quantitatively for the first time a trade-off between physical and chemical protection of OC varying with aggregate size and the different contributions of minerals to OC preservation. Incorporating pore structure and mineral composition into C modeling would optimize the C models and improve the soil C content prediction.


Asunto(s)
Carbono , Minerales , Suelo , Suelo/química , Carbono/análisis , Minerales/química , Dióxido de Carbono/análisis , China , Tomografía con Microscopio Electrónico , Monitoreo del Ambiente
19.
Sci Rep ; 14(1): 7824, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570696

RESUMEN

Monoculture switchgrass and restored prairie are promising perennial feedstock sources for bioenergy production on the lands unsuitable for conventional agriculture. Such lands often display contrasting topography that influences soil characteristics and interactions between plant growth and soil C gains. This study aimed at elucidating the influences of topography and plant systems on the fate of C originated from switchgrass plants and on its relationships with soil pore characteristics. For that, switchgrass plants were grown in intact soil cores collected from two contrasting topographies, namely steep slopes and topographical depressions, in the fields in multi-year monoculture switchgrass and restored prairie vegetation. The 13C pulse labeling allowed tracing the C of switchgrass origin, which X-ray computed micro-tomography enabled in-detail characterization of soil pore structure. In eroded slopes, the differences between the monoculture switchgrass and prairie in terms of total and microbial biomass C were greater than those in topographical depressions. While new switchgrass increased the CO2 emission in depressions, it did not significantly affect the CO2 emission in slopes. Pores of 18-90 µm Ø facilitated the accumulation of new C in soil, while > 150 µm Ø pores enhanced the mineralization of the new C. These findings suggest that polyculture prairie located in slopes can be particularly beneficial in facilitating soil C accrual and reduce C losses as CO2.


Asunto(s)
Panicum , Suelo , Suelo/química , Carbono/química , Dióxido de Carbono , Pradera , Plantas
20.
Integr Zool ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556643

RESUMEN

The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads, a phenomenon known as wet adhesion. However, the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores (AMPs) have not yet been fully elucidated. In this study, we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions. We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions. Such dynamic mucus secretion on the tree frog's toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA