Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793153

RESUMEN

We introduce a micro-electromechanical system (MEMS) energy harvester, designed for capturing flow energy. Moving beyond traditional vibration-based energy harvesting, our approach incorporates a cylindrical oscillator mounted on an MEMS chip, effectively harnessing wind energy through flow-induced vibration (FIV). A highlight of our research is the development of a comprehensive fabrication process, utilizing a 5.00 µm thick cantilever beam and piezoelectric film, optimized through advanced micromachining techniques. This process ensures the harvester's alignment with theoretical predictions and enhances its operational efficiency. Our wind tunnel experiments confirmed the harvester's capability to generate a notable electrical output, with a peak voltage of 2.56 mV at an 8.00 m/s wind speed. Furthermore, we observed a strong correlation between the experimentally measured voltage frequencies and the lift force frequency observed by CFD analysis, with dominant frequencies identified in the range of 830 Hz to 867 Hz, demonstrating the potential application in actual flow environments. By demonstrating the feasibility of efficient energy conversion from ambient wind, our research contributes to the development of sustainable energy solutions and low-power wireless electron devices.

2.
Sensors (Basel) ; 20(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466606

RESUMEN

We present a cost-effective approach to produce silicon strain gauges that can withstand very high voltage without using any complex package design and without sacrificing any sensor performance. This is achieved by a special silicon strain gauge structure created on an alkali-free glass substrate that has a high breakdown voltage. A half-bridge silicon strain gauge is designed, fabricated, and then tested to measure its output characteristics. The device has a glass layer that is only 25-55 µm thick; it shows it is able to withstand a voltage of over 2000 V while maintaining a high degree of linearity with correlation coefficients higher than 0.9990 and an average sensitivity of 104.13. Due to their unique electrical properties, silicon strain gauges-on-glass chips hold much promise for use in advanced force and pressure sensors.

3.
Micromachines (Basel) ; 10(7)2019 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-31337075

RESUMEN

The micro-electromechanical system (MEMS) safety-and-arming (S&A) device has the features of integration and miniaturization, which is one of the important directions of weapon development. Confined by the fabrication process, the silicon-based devices are too fragile, and the metal-based devices are low precision. In order to solve the contradiction between high precision and high structure strength, a metal/silicon composite structure is proposed in this paper, and a hybrid fabrication process is introduced. This new method mainly consists of metal sputtering, electroplating, and (inductively-coupled-plasma) ICP etching. As the resolution of the thick dry film is limited, the process of a femtosecond laser is applied to refine the structure, and the Ni plate (a block of 1 mm × 3 mm × 0.3 mm with a cavity of ϕ 0.85 mm × 0.3 mm in the center) is fabricated on the silicon-on-insulator (SOI) wafer successfully. After the double sides are etched by ICP, the SOI wafer is immersed in a buffered-oxide-etch (BOE) etchant to remove the buried layer. The cover plate acts as the encapsulation and is bonded with the SOI wafer by the epoxy glue. Then, the temporary support beam of the device is broken by the probe, and the suspended composite structure can be fully released. The hybrid process is the integration of the silicon-based process and the metal-based process, which can combine the advantages of both high precision and a high structure strength. The process proposed here is suitable for the application of weapon miniaturization.

4.
Micromachines (Basel) ; 8(7)2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-30400395

RESUMEN

In this study grape must fermentation is monitored using a self-actuating/self-sensing piezoelectric micro-electromechanical system (MEMS) resonator. The sensor element is excited in an advanced roof tile-shaped vibration mode, which ensures high Q-factors in liquids (i.e., Q ~100 in isopropanol), precise resonance frequency analysis, and a fast measurement procedure. Two sets of artificial model solutions are prepared, representing an ordinary and a stuck/sluggish wine fermentation process. The precision and reusability of the sensor are shown using repetitive measurements (10 times), resulting in standard deviations of the measured resonance frequencies of ~0.1%, Q-factor of ~11%, and an electrical conductance peak height of ~12%, respectively. With the applied evaluation procedure, moderate standard deviations of ~1.1% with respect to density values are achieved. Based on these results, the presented sensor concept is capable to distinguish between ordinary and stuck wine fermentation, where the evolution of the wine density associated with the decrease in sugar and the increase in ethanol concentrations during fermentation processes causes a steady increase in the resonance frequency for an ordinary fermentation. Finally, the first test measurements in real grape must are presented, showing a similar trend in the resonance frequency compared to the results of an artificial solutions, thus proving that the presented sensor concept is a reliable and reusable platform for grape must fermentation monitoring.

5.
Micromachines (Basel) ; 8(10)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30400501

RESUMEN

Fully implantable, self-powered hearing aids with no external unit could significantly increase the life quality of patients suffering severe hearing loss. This highly demanding concept, however, requires a strongly miniaturized device which is fully implantable in the middle/inner ear and includes the following components: frequency selective microphone or accelerometer, energy harvesting device, speech processor, and cochlear multielectrode. Here we demonstrate a low volume, piezoelectric micro-electromechanical system (MEMS) cantilever array which is sensitive, even in the lower part of the voice frequency range (300⁻700 Hz). The test array consisting of 16 cantilevers has been fabricated by standard bulk micromachining using a Si-on-Insulator (SOI) wafer and aluminum nitride (AlN) as a complementary metal-oxide-semiconductor (CMOS) and biocompatible piezoelectric material. The low frequency and low device footprint are ensured by Archimedean spiral geometry and Si seismic mass. Experimentally detected resonance frequencies were validated by an analytical model. The generated open circuit voltage (3⁻10 mV) is sufficient for the direct analog conversion of the signals for cochlear multielectrode implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA