Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 732
Filtrar
1.
Cells ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273069

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease with an unknown etiology. The purpose of this research was to assess miR-223, miR-146a, and miR-193a in acute and chronic phases of experimental autoimmune encephalomyelitis (EAE) mice to consider the possible role of these genes in the pathogenesis of MS. EAE induction was given by myelin oligodendrocyte glycoprotein peptide on female C57BL/6 mice. Clinical scores and other criteria were followed daily until day 21 for the acute group and day 77 for the chronic group. At the end of the course, inflammation and demyelination of the central nervous system (CNS) were assessed by histological analysis. MicroRNA expression levels were assessed by real-time PCR. EAE development attenuated in the chronic group, and histological analysis showed less infiltration and demyelination in the chronic group compared to the acute group. The upper expression of miR-223 is demonstrated in the acute phase of EAE. Moreover, the expression levels of miR-146a and miR-193a decreased in the chronic phase of EAE. MiR-223 showed a highly coordinated elevation in the acute phase both in vivo and in vitro. MiR-146a shares a pathway with miR-223 through effecting IL-6 expression. Further studies are needed to reveal their impact on EAE and possible applications as drug targets and biomarkers.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Ratones , Femenino , Enfermedad Crónica , Regulación de la Expresión Génica , Enfermedad Aguda , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo
2.
Biochem Genet ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223335

RESUMEN

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disorder affecting white and gray matter. This study aimed to investigate the association between clinical outcomes in MS patients and the levels of certain molecules in their serum, including ACTH, IL-17, and specific miRNAs: miR-26a, miR-34a, miR-155-5p, and miR-146a. Fifty healthy people and 75 blood samples from MS patients were selected. MS patients had higher expression levels of IL-17, miR-26a, miR-34a, and miR-146a compared to healthy individuals (p < 0.0001). There was no significant difference in miR-155-5p expression between the two groups (p = 0.203). MS patients also had higher serum levels of ACTH compared to the normal population (p < 0.0001). In MS patients, there was a negative correlation between IL-17 and miR-155-5p expression levels (p = 0.048, r = - 0.229). Similarly, a significant negative correlation was observed between ACTH and miR-155-5p in the control group (p = 0.044, r = - 0.286). The study's analysis revealed no significant difference in the expression of miR-155-5p between MS patients and normal individuals; the study's examination revealed that the expression level of IL-17, miR-26a, miR-34a, and miR-146a was higher in MS patients than in normal individuals.

3.
Turk J Obstet Gynecol ; 21(3): 158-165, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228203

RESUMEN

Objective: Recurrent spontaneous abortion (RSA) is defined as two or more pregnancy losses before 24 gestational weeks, accounting for 1-3% of fertile couples. A vast majority of single-nucleotide polymorphisms (SNPs) in some microRNA (miRNA) genes can change the miRNA-mRNA interaction and are associated with the risk of RSA. This study was designed to better elucidate the association between miR-27a, miR-499, and miR-146a polymorphisms and RSA risk. Materials and Methods: SNP genotyping of miR-27a (rs895819), miR-499 (rs3746444), and miR-146a (rs2910164) was performed using polymerase chain reaction (PCR)-restriction fragment length polymorphism and tetra amplification-refractory mutation system PCR in 98 patients with RSA and 105 healthy subjects. Results: Our results showed that the miR-499 rs3746444 and miR-27a rs895819 polymorphisms were significantly associated with RSA risk, whereas no significant differences were observed between the rs2910164 polymorphism and RSA susceptibility. Conclusion: We proposed that the miR-499 rs3746444 and miR-27a rs895819 polymorphisms were correlated with RSA in our population, but the miR-146a rs2910164 variant was not associated with the risk of RSA.

4.
Per Med ; : 1-18, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263956

RESUMEN

Aim: This study aimed to investigate the associations between single nucleotide polymorphisms (SNPs) of IL-6 (-174G/C), microRNA146a (rs2910164C/G) and MALAT1 (rs619586A/G) and susceptibility to rheumatoid arthritis (RA) in Egyptians.Methods: SNPs were genotyped in 101 RA patients and 104 controls. Expression levels were evaluated either by Enzyme-linked immunosorbent assay (ELISA) for IL-6 or quantitative real-time PCR (qRT-PCR) for miR-146a and MALAT1.Results: IL-6-174 GC (OR = 3.422) genotype, IL-6-174 C allele (OR = 2.565), miR-146a (rs2910164) CG (OR = 2.190) and MALAT1 (rs619586) AA (OR = 4.125) genotypes and A allele (OR = 6.122) could be considered as risk factors for RA. An increase in the expression of IL-6, miR-146a and MALAT1 was detected in RA patients, which was independent of any SNP.Conclusion: SNPs of IL-6, miR-146a and MALAT1were linked to RA predisposition in Egyptians.


Rheumatoid arthritis (RA) is a chronic joint disorder with overexpression of inflammatory mediators. There is increasing evidence that epigenetic changes could play a prominent role in RA pathogenesis. This study was designated to explore the associations between genetic mutation of inflammatory cytokines (Interleukin (IL-6) and epigenetic modulators (miR-146a and MALAT1) and susceptibility to RA. Increased production of IL-6, miR-146a and MALAT1 is a remarkable event in RA patients. We provide evidence that certain genotypes could be used as risk factors for the disease. Our data suggest that detecting certain mutations is quite important in disease prediction. Special concern has to be directed to those persons harboring definite genotypes to achieve better clinical manipulation of patients at risk.

5.
Mutat Res ; 829: 111876, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39182401

RESUMEN

BACKGROUND: Bladder cancer (BCa) is the most common malignancy with increasing morbidity and mortality. Circular RNA (circRNA) ATF6 level was downregulated in BCa after GSE92675 CircRNA microarray dataset was analyzed using GEO2R. However, its function and mechanism in BCa remain largely unknown. METHODS: GEO2R and reverse transcription quantitative polymerase chain reaction (RT-qPCR) were used to measure levels of circRNA ATF6, microRNA-146a-5p (miR-146a-5p), and filamin A (FLNA). CircRNA ATF6 stability was assessed by actinomycin D and RNase R assays, while circRNA ATF6 cellular localization was examined by FISH experiments in T24 cells. Cell counting kit-8 (CCK-8), colony formation, wound-healing, and transwell assays were used to study circRNA ATF6's function in growth, motility, and invasion. By examining luciferase, starBase, RNA pull-down, and RNA immunoprecipitation (RIP) experiments, we anticipated and confirmed miR-146a-5p interactions with circRNA ATF6, as well as miR-146a-5p interactions with FLNA. On tumor-bearing mice, in vivo experiments were conducted. RESULTS: MiR-146a-5p expression in Bca was elevated, while circRNA ATF6 and FLNA were downregulated. CircRNA ATF6 showed better stability in BCa cells, with its expression primarily in the cytoplasm. Upregulating circRNA ATF6 lowered BCa cell viability, colony numbers, and invasion numbers, but broadened their migratory pattern. MiR-146a-5p was directly sponged up by circRNA ATF6, which also detrimentally affected miR-146a-5p levels in BCa. MiR-146a-5p reduced BCa FLNA expression by targeting FLNA. FLNA silencing abolished circRNA ATF6's mitigating function in BCa cell proliferation, motility, and invasion. In vivo, overexpression of circRNA ATF6 significantly reduced tumor volume and weight. CONCLUSION: CircRNA ATF6 suppresses BCa cell growth, migration and invasion through the miR-146a-5p/FLNA axis.

6.
J Adv Res ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127099

RESUMEN

INTRODUCTION: Exosome-miR-146a is significantly increased in patients with Atherosclerosis (AS), but its mechanism and effect on AS have not been fully elucidated. OBJECTIVES: To explore the change rule and mechanism of exosomes release, and the role and molecular mechanism of exosome-miR-146a in AS. METHODS: We isolated and identified exosomes from THP-1 macrophages after treating them with ox-LDL. Then used co-immunoprecipitation and silver staining to identify the proteins involved in regulating exosome release. PKH67 was used to label exosomes to confirm that cells can absorb them, and then co-culture with HVSMCs for cell proliferation and migration detection. The target genes of miR-146a were screened and identified through bioinformatics and luciferase activity assay, and the expression of miR-146a and related proteins was detected through qRT-PCR and Western blot in HUVECs. An AS model in LDLR-/- mice induced by a high-fat diet was developed to investigate the impact of exosome-miR-146a on AS. RESULTS: The results showed that experimental foam cells from AS showed higher expression of miR-146a. It was observed that NMMHC IIA and HSP70 interacted to regulate the release of exosomes. And HUVECs can absorb exosomes derived from macrophages. In addition, we also found that miR-146a directly targeted the SMAD4 gene to modulate the p38 MAPK signaling pathway, thereby mediating HUVECs damage. Furthermore, exosome-miR-146a induced abnormal proliferation and migration of HVSMCs. The expression of miR-146a was significantly reduced in miR-146a-mimics mice and increased in miR-146a inhibitor mice whereas the inhibition of miR-146a effectively reduced while increasing miR-146a worsened AS in mice. CONCLUSION: Our findings expressed the potential of miR-146a as a favorable therapeutic target for AS, however, further exploration is suggestive for deep understanding of the mechanisms regulating exosome-miR-146a release in vivo and to develop effective therapeutic strategies involving miR-146a.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39162052

RESUMEN

Obesity is a common public health problem associated with serious, life-threatening complications. MicroRNAs (miRs) have modulating roles in the immune and inflammatory systems. Therefore, this study aimed to analyze the relationship between miR-146a and morbid obesity (MO) in a Turkish population. In this study, a total of 258 subjects (110 patients with MO and 148 controls) were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method to analyze miR-146a rs2910164. Then, we examined the patients as males and females separately. The results of the analyses were evaluated for statistical significance. There was a significant difference in genotype and allele frequencies of miR-146a rs2910164 between patients with MO and control individuals. miR-146a rs2910164 CC genotype and C allele were shown to increase in the MO patients' group compared to the control group (p = 0.000, p = 0.000, respectively). Also, the C allele was higher in both female and male patients compared to controls (p = 0.000, p = 0.000, respectively). High differences were also observed when the patients and the controls were compared according to CC versus GG + GC and GG versus GC + CC (p = 0.000, p = 0.000, respectively). A significant difference was found between the female/male patients and the female/male controls in terms of GG + GC versus CC (p = 0.000, p = 0.000, respectively). To the best of our knowledge, this is the first study to investigate the relationship between this variant and MO in Turkey. Our results showed that miR-146a rs2910164 is a valuable biomarker that can be used to distinguish between patients with MO and the healthy population. The findings can be extended by increasing the sample sizes with diverse ethnicities.

8.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125620

RESUMEN

Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH.


Asunto(s)
MicroARNs , Hipertensión Arterial Pulmonar , Arteria Pulmonar , Función Ventricular Derecha , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Humanos , Ratones , Masculino , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Modelos Animales de Enfermedad , Monocrotalina , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/genética , Hipertrofia Ventricular Derecha/fisiopatología , Hipertrofia Ventricular Derecha/metabolismo , Remodelación Vascular/genética , Ratas Sprague-Dawley
9.
Pathol Res Pract ; 262: 155522, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39146829

RESUMEN

BACKGROUND: Several studies on biomarker properties of microRNAs from liquid biopsy in prostate cancer (PCa) identified miR-146a-5p as a potential novel diagnostic marker. However, other studies with the same or similar topic failed to confirm the supposed discriminatory ability of miR-146a-5p, for which reason we aimed at elucidating the potential biomarker role of circulatory/urinary miR-146a-5p in PCa by conducting a qualitative and quantitative data synthesis. METHODS: Eligible articles were identified by searching PubMed, Scopus and Web of Science databases. Open MetaAnalyst software was used for pooling data on sensitivity, specificity, likelihood ratio and diagnostic odds ratio (OR) of miR-146a-5p. RESULTS: A total of 15 articles were eligible for qualitative data synthesis, while the results from 13 studies with 2080 participants were included in the meta-analysis. The established between-study heterogeneity was high, while the expression of hsa-miR-146a was associated with a diagnostic OR of 3.544 (P < 0.001; 95 %CI 2.186-5.747). Pooled sensitivity was found to be lower than 70 % (0.655, 95 %CI 0.573-0.729, P < 0.001), while the obtained value for specificity was 65 % (95 %CI 0.583-0.709, P < 0.001). Segregating studies according to ethnicity, sample type or the type of controls did not result in significantly higher sensitivity and specificity in subgroups, compared to the overall pooled data. CONCLUSIONS: The resulting pooled sensitivity, specificity and diagnostic OR do not qualify miR-146a-5p for a reliable diagnostic biomarker of PCa.


Asunto(s)
Biomarcadores de Tumor , MicroARNs , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , MicroARNs/genética , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Biopsia Líquida/métodos , Sensibilidad y Especificidad
10.
Sci Rep ; 14(1): 19917, 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39198597

RESUMEN

Small extracellular vesicles (sEVs) have the ability to transfer genetic material between cells, but their role in mediating HBV infection and regulating M1 macrophages to promote immune evasion remains unclear. In this study, we utilized PMA + LPS + IFN-γ to induce THP-1 into M1 macrophages. We then extracted sEVs from HepG2.2.15 cell and treated the M1 macrophages with these sEVs. QPCR detection revealed the presence of HBV-DNA in the M1 macrophages. Additionally, RT-qPCR and WB analysis demonstrated a significantly decreased in the expression of TLR4, NLRP3, pro-caspase-1, caspase-1p20, IL-1ß and IL-18 in the M1 macrophages (P < 0.05). Furthermore, RT-qPCR results displayed high expression levels of that miR-146a and FEN-1 in the sEVs derived from HepG2.2.15 cells (P < 0.01). RT -qPCR and WB analysis showed that these sEVs enhanced the expression of FEN-1 or miR-146a in the M1 macrophages through miR-146a or FEN-1 (P < 0.05), while simultaneously reducing the expression of TLR4, NLRP3, caspase-1p20, IL-1ß and IL-18 in the M1 macrophages (P < 0.05). In summary, our findings indicate that sEVs loaded with HBV inhibit the inflammatory function of M1 macrophages and promote immune escape. Additionally, miR-146a and FEN-1 present in the sEVs play a crucial role in this process.


Asunto(s)
Vesículas Extracelulares , Virus de la Hepatitis B , Hepatitis B , Evasión Inmune , Macrófagos , MicroARNs , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Virus de la Hepatitis B/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , MicroARNs/genética , MicroARNs/metabolismo , Células Hep G2 , Hepatitis B/virología , Hepatitis B/inmunología , Hepatitis B/metabolismo , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Interleucina-18/metabolismo , Células THP-1
11.
Heliyon ; 10(12): e32752, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38948043

RESUMEN

Jiedu-Quyu-Ziyin Fang (JQZF) is a formula that has been empirically used for the treatment of SLE in clinical practice. JQZF has become an approved hospital prescription in China. Fifteen MRL/lpr mice were randomly divided into three groups: Model, JQZF, and JQZF + GC, with five mice in each group. Five MRL/MPJ mice were used as the Blank group. After 8 weeks of administration, peripheral blood serum was collected to detect anti-dsDNA antibodies and complement C3 levels. Spleen B cells were collected to detect the expression of TLR7 and NF-κBp65 mRNA, and correlation analysis was performed. Transcriptome sequencing analysis was also performed on spleen B cells. Further, key miRNA and key gene mRNA expression were detected by RT-qPCR, and key protein expression levels were detected by Western blot method. Bioinformatics methods predicted that ESR1 is a key target of JQZF action on SLE, hsa-miR-146a-5p is one of the key miRNAs, and KEGG pathway analysis showed that NF-κB signaling pathway is its key signaling pathway. Transcriptome sequencing of MRL/lpr mouse spleen B cells revealed that the differential genes between the JQZF and Model groups were enriched in Toll-like receptor signaling pathway, NF-κB signaling pathway, Estrogen signaling pathway, etc. Animal studies show that JQZF treatment significantly boosts serum C3 and lowers anti-dsDNA antibodies (P < 0.01). On the molecular level, JQZF suppresses TLR7 and NF-κBp65 mRNA in spleen B cells, with TLR7 mRNA positively linked to anti-dsDNA titers and negatively to serum C3. Further cellular work demonstrates that JQZF reverses the increased IRAK1 and TRAF6 expression seen after miR146a inhibition. Additionally, post-ERα inhibition, JQZF continues to upregulate miR146a and more significantly reduces TLR7 mRNA expression (P < 0.01), pointing to ERα's pivotal role in the miR146a-TLR7 axis. These results indicate JQZF alleviates SLE by adjusting the ERα-miR146a-TLR7 loop, showcasing its mechanism and therapeutic potential for SLE.

12.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999931

RESUMEN

Aging is associated with a decline in the functionality of various cell types, including dermal fibroblasts, which play a crucial role in maintaining skin homeostasis and wound healing. Chronic inflammation and increased reactive oxygen species (ROS) production are hallmark features of aging, contributing to impaired wound healing. MicroRNA-146a (miR-146a) has been implicated as a critical regulator of inflammation and oxidative stress in different cell types, yet its role in aged dermal fibroblasts and its potential relevance to wound healing remains poorly understood. We hypothesize that miR-146a is differentially expressed in aged dermal fibroblasts and that overexpression of miR-146a will decrease aging-induced inflammatory responses and ROS production. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of miR-146a was achieved through miR-146a mimic transfection. ROS were detected using a reliable fluorogenic marker, 2,7-dichlorofluorescin diacetate. Real-time PCR was used to quantify relative gene expression. Our investigation revealed a significant reduction in miR-146a expression in aged dermal fibroblasts compared to their younger counterparts. Moreover, aged dermal fibroblasts exhibited heightened levels of inflammatory responses and increased ROS production. Importantly, the overexpression of miR-146a through miR-146a mimic transfection led to a substantial reduction in inflammatory responses through modulation of the NF-kB pathway in aged dermal fibroblasts. Additionally, the overexpression of miR-146a led to a substantial decrease in ROS production, achieved through the downregulation of NOX4 expression in aged dermal fibroblasts. These findings underscore the pivotal role of miR-146a in mitigating both inflammatory responses and ROS production in aged dermal fibroblasts, highlighting its potential as a therapeutic target for addressing age-related skin wound healing.


Asunto(s)
Fibroblastos , Inflamación , MicroARNs , Especies Reactivas de Oxígeno , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Ratones , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Piel/metabolismo , Piel/patología , Piel/citología , FN-kappa B/metabolismo , Células Cultivadas , Envejecimiento/metabolismo , Envejecimiento/genética , Estrés Oxidativo
13.
SLAS Technol ; 29(4): 100172, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067816

RESUMEN

Bone Marrow mesenchymal Stem Cells (BMSCs) are considered as an important source of cells for regenerative medicine, In particular, Bone Marrow mesenchymal Stem Cells Exosomes (BMSCs-EXO) have the most significant effect in the treatment of Spinal Cord Injury (SCI), but the mechanism of action is still unknown. This study found that compared with other SCI groups, BMSCs-EXO loaded with miR-146a could significantly improve the functional recovery of the hind limbs of SCI rats. Hematoxylin and eosin (H&E) indicated that the lesion area of spinal cord injury was less, nissl staining indicated that the number of nissl bodies remained more; the mechanism may be through inhibiting the expression of IRAK1 and TRAF6, blocking the activation of NF-κB p65, reducing the expression of TNF-α, IL-1ß and IL-6 inflammatory factors and oxidative stress, improving the SCI microenvironment, and promoting the repair of neural function. In general, we found that BMSCs-EXO loaded with miR-146a could reduce the inflammatory response and oxidative stress in SCI by inhibiting the activation of IRAK1/TRAF6/NF-κB p65 signaling pathway, and promote the recovery of neurological function in SCI rats.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Células Madre Mesenquimatosas , MicroARNs , Traumatismos de la Médula Espinal , Factor 6 Asociado a Receptor de TNF , Animales , Traumatismos de la Médula Espinal/terapia , MicroARNs/metabolismo , MicroARNs/genética , Células Madre Mesenquimatosas/metabolismo , Ratas , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Vesículas Extracelulares/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Modelos Animales de Enfermedad , Células de la Médula Ósea
14.
Glia ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041109

RESUMEN

Neuroinflammation plays important roles in retinal ganglion cell (RGC) degeneration in glaucoma. MicroRNA-146 (miR-146) has been shown to regulate inflammatory response in neurodegenerative diseases. In this study, whether and how miR-146 could affect RGC injury in chronic ocular hypertension (COH) experimental glaucoma were investigated. We showed that in the members of miR-146 family only miR-146a-5p expression was upregulated in COH retinas. The upregulation of miR-146a-5p was observed in the activated microglia and Müller cells both in primary cultured conditions and in COH retinas, but mainly occurred in microglia. Overexpression of miR-146a-5p in COH retinas reduced the levels pro-inflammatory cytokines and upregulated the levels of anti-inflammatory cytokines, which were further confirmed in the activated primary cultured microglia. Transfection of miR-146a-5p mimic increased the percentage of anti-inflammatory phenotype in the activated BV2 microglia, while transfection of miR-146a-5p inhibitor resulted in the opposite effects. Transfection of miR-146a-5p mimic/agomir inhibited the levels of interleukin-1 receptor associated kinase (IRAK1) and TNF receptor associated factor 6 (TRAF6) and phosphorylated NF-κB subunit p65. Dual luciferase reporter gene assay confirmed that miR-146a-5p could directly target IRAK1 and TRAF6. Moreover, downregulation of IRAK1 and TRAF6 by siRNA techniques or blocking NF-κB by SN50 in cultured microglia reversed the miR-146a-5p inhibitor-induced changes of inflammatory cytokines. In COH retinas, overexpression of miR-146a-5p reduced RGC apoptosis, increased RGC survival, and partially rescued the amplitudes of photopic negative response. Our results demonstrate that overexpression of miR-146a-5p attenuates RGC injury in glaucoma by reducing neuroinflammation through downregulating IRAK1/TRAF6/NF-κB signaling pathway in microglia.

15.
Cell Rep ; 43(7): 114453, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985677

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.


Asunto(s)
Vesículas Extracelulares , Macrófagos Alveolares , Staphylococcus aureus Resistente a Meticilina , MicroARNs , Necroptosis , Animales , Vesículas Extracelulares/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Ratones , MicroARNs/metabolismo , MicroARNs/genética , Fagocitosis , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/metabolismo , Masculino , Humanos
16.
Biosci Rep ; 44(7)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38967046

RESUMEN

INTRODUCTION: Systemic lupus erythematosus (SLE) is a diverse autoimmune disease that arises from a combination of complex genetic factors and environmental influences. While circRNAs and miRNAs have recently been identified as promising biomarkers for disease diagnosis, their specific expression patterns, and clinical implications in SLE are not yet fully understood. AIM OF THE WORK: The aim of the present study was to determine the role of a panel of noncoding-RNAs specifically circRNAs (circ-TubD1, circ-CDC27, and circ-Med14), along with miRNA (rno-miR-146a-5p) and mRNA (TRAF6), as novel minimally invasive diagnostic biomarkers for experimentally induced SLE. Additionally, the study involved an insilico bioinformatics analysis to explore potential pathways involved in the pathogenesis of SLE, aiming to enhance our understanding of the disease, enable early diagnosis, and facilitate improved treatment strategies. MATERIALS AND METHODS: SLE was induced in rats using single IP injection of incomplete Freund's adjuvant (IFA). The Induction was confirmed by assessing the ANA and anti-ds DNA levels using ELSA technique. qPCR analysis was conducted to assess the expression of selected RNAs in sera collected from a group of 10 rats with induced SLE and a control group of 10 rats. In addition, bioinformatics and functional analysis were used to construct a circRNA-miRNA-mRNA network and to determine the potential function of these differentially expressed circRNAs. RESULTS: SLE rats demonstrated significantly higher expression levels of circ-CDC27, circ-Med14, and rno-miR-146a-5p as well as TRAF6, with lower expression level of circ-TubD1 in sera of SLE rats relative to controls. ROC curve analysis indicated that all the selected non-coding RNAs could serve as potential early diagnostic markers for SLE. In addition, the expression level of circ-TubD1 was negatively correlated with rno-miR-146a-5p, however, rno-miR-146a-5p was positively correlated with TRAF6. Bioinformatic analysis revealed the incorporation of the circRNAs targeted genes in various immune system and neurodegeneration pathways. CONCLUSIONS: Therefore, circRNAs; circ-TubD1, circ-CDC27, and circ-Med14, in addition to the miRNA (rno-miR-146a-5p) and mRNA (TRAF6) may be involved in the development of SLE and may have promising roles for future diagnosis and targeted therapy.


Asunto(s)
Biomarcadores , Modelos Animales de Enfermedad , Lupus Eritematoso Sistémico , MicroARNs , ARN Circular , Animales , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/diagnóstico , ARN Circular/genética , ARN Circular/sangre , Biomarcadores/sangre , Ratas , MicroARNs/genética , MicroARNs/sangre , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/sangre , Biología Computacional , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/sangre , Masculino
17.
Diabetes Metab Syndr Obes ; 17: 2747-2760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072343

RESUMEN

Objective: To Study the Correlations of microRNA-155 (miR-155) and microRNA-146a (miR-146a) Expression in Peripheral Blood of Type 2 Diabetes Mellitus (T2DM) Patients with Diabetic Peripheral Neuropathy (DPN), and Explore the Clinical Value of miR-155 and miR-146a in the Diagnosis and Treatment Outcomes of DPN. Methods: The study included 51 T2DM patients without DPN (T2DM group), 49 T2DM patients with DPN (DPN group), and 50 normal controls (NC group). Quantitative real-time PCR was utilized to determine the expression levels of miR-155 and miR-146a. Clinical features and risk factors for DPN were assessed. Multivariate stepwise logistic regression analysis was conducted to confirm whether the expressions of miR-155 and miR-146a could independently predict the risk of DPN. ROC curve analysis evaluated their diagnostic value. Results: The T2DM group exhibited significantly lower expression levels of miR-155 and miR-146a compared to the NC group (P < 0.05). Moreover, the DPN group exhibited a significantly decreased expression level of miR-155 and miR-146a compared to the T2DM group (P < 0.01). Multivariate logistic regression analysis indicated that higher levels of miR-155 and miR-146a might serve as protective factors against DPN development. ROC curve analysis revealed that miR-155 (sensitivity 91.8%, specificity 37.3%, AUC 0.641,) and miR-146a (sensitivity 57.1%, specificity 84.3%, AUC 0.722) possess a strong ability to discriminate between T2DM and DPN. Their combined use further enhanced the diagnostic potential of DPN (sensitivity 83.7%, specificity 60.8%, AUC 0.775). A multi-index combination can improve DPN diagnostic efficiency. Conclusion: The decreased expression of miR-155 and miR-146a in the peripheral blood of T2DM patients is closely related to the occurrence of DPN, highlighting their potential as valuable biomarkers for diagnosing and prognosticating DPN.

18.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39062931

RESUMEN

microRNA (miR)-146a emerges as a promising post-transcriptional regulator in various inflammatory diseases with different roles for the two isoforms miR-146a-5p and miR-146a-3p. The present study aimed to examine the dual role of miR-146a-5p and miR-146a 3p in the modulation of inflammation in human pulmonary epithelial and immune cells in vitro as well as their expression in patients with inflammatory lung diseases. Experimental inflammation in human A549, HL60, and THP1 via the NF-kB pathway resulted in the major upregulation of miR-146a-5p and miR-146a-3p expression, which was partly cell-specific. Modulation by transfection with miRNA mimics and inhibitors demonstrated an anti-inflammatory effect of miR-146a-5p and a pro-inflammatory effect of miR-146a-3p, respectively. A mutual interference between miR-146a-5p and miR-146a-3p was observed, with miR-146a-5p exerting a predominant influence. In vivo NGS analyses revealed an upregulation of miR-146a-3p in the blood of patients with cystic fibrosis and bronchiolitis obliterans, while miR-146a-5p levels were downregulated or unchanged compared to controls. The reverse pattern was observed in patients with SARS-CoV-2 infection. In conclusion, miR-146a-5p and miR-146a-3p are two distinct but interconnected miRNA isoforms with opposing functions in inflammation regulation. Understanding their interaction provides important insights into the progression and persistence of inflammatory lung diseases and might provide potential therapeutic options.


Asunto(s)
Células Epiteliales , Inflamación , MicroARNs , Humanos , Células A549 , COVID-19/genética , COVID-19/inmunología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Inflamación/metabolismo , Pulmón/patología , Pulmón/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/metabolismo , Células THP-1
19.
Mol Ther Nucleic Acids ; 35(3): 102228, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38975000

RESUMEN

Duchenne muscular dystrophy (DMD) is a progressive muscle disease caused by the absence of dystrophin protein. One current DMD therapeutic strategy, exon skipping, produces a truncated dystrophin isoform using phosphorodiamidate morpholino oligomers (PMOs). However, the potential of exon skipping therapeutics has not been fully realized as increases in dystrophin protein have been minimal in clinical trials. Here, we investigate how miR-146a-5p, which is highly elevated in dystrophic muscle, impacts dystrophin protein levels. We find inflammation strongly induces miR-146a in dystrophic, but not wild-type myotubes. Bioinformatics analysis reveals that the dystrophin 3' UTR harbors a miR-146a binding site, and subsequent luciferase assays demonstrate miR-146a binding inhibits dystrophin translation. In dystrophin-null mdx52 mice, co-injection of miR-146a reduces dystrophin restoration by an exon 51 skipping PMO. To directly investigate how miR-146a impacts therapeutic dystrophin rescue, we generated mdx52 with body-wide miR-146a deletion (146aX). Administration of an exon skipping PMO via intramuscular or intravenous injection markedly increases dystrophin protein levels in 146aX vs. mdx52 muscles while skipped dystrophin transcript levels are unchanged supporting a post-transcriptional mechanism of action. Together, these data show that miR-146a expression opposes therapeutic dystrophin restoration, suggesting miR-146a inhibition warrants further research as a potential DMD exon skipping co-therapy.

20.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39000375

RESUMEN

Angiogenesis is critical for rheumatoid arthritis (RA) progression. The effects of tofacitinib, a JAK-STAT inhibitor used for RA treatment, on angiogenesis in RA are unclear. We, therefore, evaluated the levels of angiogenic factors in two systems of a human co-culture of fibroblast (HT1080) and monocytic (U937) cell lines treated with tofacitinib and in serum samples from RA patients before and after six months of tofacitinib treatment. Tofacitinib reduced CD147 levels, matrix metalloproteinase-9 (MMP-9) activity, and angiogenic potential but increased endostatin levels and secreted proteasome 20S activity. In vitro, tofacitinib did not change CD147 mRNA but increased miR-146a-5p expression and reduced STAT3 phosphorylation. We recently showed that CD147 regulates the ability of MMP-9 and secreted proteasome 20S to cleave collagen XVIIIA into endostatin. We show here that tofacitinib-enhanced endostatin levels are mediated by CD147, as CD147-siRNA or an anti-CD147 antibody blocked proteasome 20S activity. The correlation between CD147 and different disease severity scores supported this role. Lastly, tofacitinib reduced endostatin' s degradation by inhibiting cathepsin S activity and recombinant cathepsin S reversed this in both systems. Thus, tofacitinib inhibits angiogenesis by reducing pro-angiogenic factors and enhancing the anti-angiogenic factor endostatin in a dual effect mediated partly through CD147 and partly through cathepsin S.


Asunto(s)
Artritis Reumatoide , Basigina , Catepsinas , Endostatinas , Piperidinas , Pirimidinas , Humanos , Basigina/metabolismo , Basigina/genética , Piperidinas/farmacología , Endostatinas/metabolismo , Endostatinas/farmacología , Pirimidinas/farmacología , Catepsinas/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Factor de Transcripción STAT3/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Femenino , Persona de Mediana Edad , Masculino , Pirroles/farmacología , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA