Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(33)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38763138

RESUMEN

Oxide/metal/oxide multilayers as a transparent conducting electrode (TCE) have been developed to replace metals due to their high transparency and low sheet resistance. Nickel oxide (NiO) film with a high work function was used as an oxide to form NiO/Ag/NiO (NAN) TCE, therefore a high barrier height between NAN/zinc oxide (ZnO) interface. In the study, NAN TCE was deposited on ZnO surface to fabricate metal-semiconductor-metal (MSM) photodetectors (PDs) and study its carrier transport mechanism. The NAN TCE has a low sheet resistance of 6.5 Ω/sq. and transmittance more than 40% in a 300-1000 nm wavelength range. Such issues result in the figure-of-merit is higher (2.3 × 10-4Ω-1) than that (2.5 × 10-7Ω-1) of pure single NiO thin film. As compared to the conventional Au/ZnO MSM-PDs, the NAN/ZnO MSM-PDs demonstrates a lower leakage current as a result of Ni atoms diffusing into ZnO and passivating the defects. Due to the high work function of NiO, the NAN/ZnO interface exhibits a barrier height as high as 0.91 eV. The Au/ZnO MSM-PDs reveals only one carrier conduction of ohmic due to the electrons tunnel form Au into ZnO through the surface defects. In contrast, two distinct carrier transport mechanisms were observed in the NAN/ZnO MSM-PDs. At low-voltage forV⩽0.64 V, ohmic conduction dominates and the electrons inject from NAN to ZnO, trapped by the defect states of ZnO. At high-voltage for V⩾0.64 V, the trapped electrons acquire enough energy and emit from trap to conduction band, entering Poole-Frankel emission transport.

2.
Micromachines (Basel) ; 13(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296088

RESUMEN

Narrow-bandgap germanium-tin (GeSn) is employed to fabricate metal-semiconductor-metal (MSM) near-infrared photodetectors with low-dark currents and high responsivity. To reduce the dark current, the SiO2 layer is inserted in between the metal and semiconductor to increase the barrier height, albeit at the expense of photocurrent reduction. To couple more incident light into the absorption layer to enhance the responsivity, the distributed Bragg reflectors (DBRs) are deposited at the bottom of the GeSn substrate while placing the anti-reflection layer on the surface of the absorption layer. With the interdigital electrode spacing and width, both set at 5 µm and with 1 V bias applied, it is found the responsivities of the generic MSM control sample detector, the MSM with DBR, and the MSM with AR layer are 0.644 A/W, 0.716 A/W, and 1.30 A/W, respectively. The corresponding specific detectivities are 8.77 × 1010, 1.11 × 1011, and 1.77 × 1011 cm·Hz1/2/W, respectively. The measurement data show that these designs effectively enhance the photocurrent and responsivity. At 1 V bias voltage, normalized responsivity evinces that the photodetection range has been extended from 1550 nm to over 2000 nm, covering the entire telecommunication band. Incorporating GeSn as a sensing layer offers one of the new alternative avenues for IR photodetection.

3.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296518

RESUMEN

Harvesting energetic carriers from plasmonic resonance has been a hot topic in the field of photodetection in the last decade. By interfacing a plasmonic metal with a semiconductor, the photoelectric conversion mechanism, based on hot carrier emission, is capable of overcoming the band gap limitation imposed by the band-to-band transition of the semiconductor. To date, most of the existing studies focus on plasmonic structural engineering in a single metal-semiconductor (MS) junction system and their responsivities are still quite low in comparison to conventional semiconductor, material-based photodetection platforms. Herein, we propose a new architecture of metal-semiconductor-metal (MSM) junctions on a silicon platform to achieve efficient hot hole collection at infrared wavelengths with a photoconductance gain mechanism. The coplanar interdigitated MSM electrode's configuration forms a back-to-back Schottky diode and acts simultaneously as the plasmonic absorber/emitter, relying on the hot-spots enriched on the random Au/Si nanoholes structure. The hot hole-mediated photoelectric response was extended far beyond the cut-off wavelength of the silicon. The proposed MSM device with an interdigitated electrode design yields a very high photoconductive gain, leading to a photocurrent responsivity up to several A/W, which is found to be at least 1000 times higher than that of the existing hot carrier based photodetection strategies.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889654

RESUMEN

Photodetectors are widely applied in modern industrial fields because they convert light energy into electrical signals. We propose a printable silver (Ag) paste electrode for a highly flexible metal-semiconductor-metal (MSM) broadband visible light photodetector as a wearable and portable device. Single-crystal and surface-textured silicon substrates with thicknesses of 37.21 µm were fabricated using a wet etching process. Surface texturization on flexible Si substrates enhances the light-trapping effect and minimizes reflectance from the incident light, and the average reflectance is reduced by 16.3% with pyramid-like structures. In this study, semitransparent, conductive Ag paste electrodes were manufactured using a screen-printing with liquid-phase process to form a flexible MSM broadband visible light photodetector. The transmittance of the homemade Ag paste solution fell between 34.83% and 36.98% in the wavelength range of visible light, from 400 nm to 800 nm. The highest visible light photosensitivity was 1.75 × 104 at 19.5 W/m2. The photocurrents of the flexible MSM broadband visible light photodetector were slightly changed under concave and convex conditions, displaying stable and durable bending properties.

5.
Nanotechnology ; 33(24)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35255484

RESUMEN

CuO nanomaterials are one of the metal-oxides that received extensive investigations in recent years due to their versatility for applications in high-performance nano-devices. Tailoring the device performance through the engineering of properties in the CuO nanomaterials thus attracted lots of effort. In this paper, we show that nanosecond (ns) laser irradiation is effective in improving the electrical and optoelectrical properties in the copper oxide nanowires (CuO NWs). We find that ns laser irradiation can achieve joining between CuO NWs and interdigital gold electrodes. Meanwhile, the concentration and type of point defects in CuO can be controlled by ns laser irradiation as well. An increase in the concentration of defect centers, together with a reduction in the potential energy barrier at the Au/CuO interfaces due to laser irradiation increases electrical conductivity and enhances photo-conductivity. We demonstrate that the enhanced electrical and photo-conductivity achieved through ns laser irradiation can be beneficial for applications such as resistive switching and photo-detection.

6.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578633

RESUMEN

Spinel ZnGa2O4 films were grown on c-plane sapphire substrates at the substrate temperature of 400 °C by radio-frequency magnetron sputtering. Post thermal annealing was employed at the annealing temperature of 700 °C in order to enhance their crystal quality. The effect of thermal annealing on the microstructural and optoelectronic properties of ZnGa2O4 films was systematically investigated in various ambiences, such as air, nitrogen, and oxygen. The X-ray diffraction patterns of annealed ZnGa2O4 films showed the crystalline structure to have (111) crystallographic planes. Transmission electron micrographs verified that ZnGa2O4 film annealed under air ambience possesses a quasi-single-crystalline structure. This ZnGa2O4 film annealed under air ambience exhibited a smooth surface, an excellent average transmittance above 82% in the visible region, and a wide bandgap of 5.05 eV. The oxygen vacancies under different annealing ambiences were revealed a substantial impact on the material and photodetector characteristics by X-ray photoelectron spectrum investigations. ZnGa2O4 film exhibits optimal performance as a metal-semiconductor-metal photodetector when annealed under air ambience. Under these conditions, ZnGa2O4 film exhibits a higher photo/dark current ratio of ~104 order, as well as a high responsivity of 2.53 A/W at the bias of 5 V under an incident optical light of 240 nm. These results demonstrate that quasi-single-crystalline ZnGa2O4 films have significant potential in deep-ultraviolet applications.

7.
Nanomaterials (Basel) ; 11(5)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946278

RESUMEN

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.

8.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138043

RESUMEN

In this work, Ga2O3 films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system with trimethylgallium precursor and oxygen (O2) plasma. To improve the quality of Ga2O3 films, they were annealed in an O2 ambient furnace system for 15 min at 700, 800, and 900 °C, respectively. The performance improvement was verified from the measurement results of X-ray diffraction, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The optical bandgap energy of the Ga2O3 films decreased with an increase of annealing temperatures. Metal-semiconductor-metal ultraviolet C photodetectors (MSM UVC-PDs) with various Ga2O3 active layers were fabricated and studied in this work. The cut-off wavelength of the MSM UVC-PDs with the Ga2O3 active layers annealed at 800 °C was 250 nm. Compared with the performance of the MSM UVC-PDs with the as-grown Ga2O3 active layers, the MSM UVC-PDs with the 800 °C-annealed Ga2O3 active layers under a bias voltage of 5 V exhibited better performances including photoresponsivity of 22.19 A/W, UV/visible rejection ratio of 5.98 × 104, and detectivity of 8.74 × 1012 cmHz1/2W-1.

9.
Adv Mater ; 31(43): e1903271, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31523860

RESUMEN

2D transition metal carbides, known as MXenes, are transparent when the samples are thin enough. They are also excellent electrical conductors with metal-like carrier concentrations. Herein, these characteristics are exploited to replace gold (Au) in GaAs photodetectors. By simply spin-coating transparent Ti3 C2 -based MXene electrodes from aqueous suspensions onto GaAs patterned with a photoresist and lifted off with acetone, photodetectors that outperform more standard Au electrodes are fabricated. Both the Au- and MXene-based devices show rectifying contacts with comparable Schottky barrier heights and internal electric fields. The latter, however, exhibit significantly higher responsivities and quantum efficiencies, with similar dark currents, hence showing better dynamic range and detectivity, and similar sub-nanosecond response speeds compared to the Au-based devices. The simple fabrication process is readily integratable into microelectronic, photonic-integrated circuits and silicon photonics processes, with a wide range of applications from optical sensing to light detection and ranging and telecommunications.

10.
Adv Mater ; 26(36): 6318-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25099882

RESUMEN

A color-selective, band-engineered photodetector is demonstrated. The device uses two Schottky junctions to accumulate charge in an energy well, which results in photocurrent gain and a plasmonic aluminum grating for photocurrent enhancement and red-green-blue color selectivity. This work provides a more intelligent way to design imaging sensors by integrating amplifiers and color filters directly into pixels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA