Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEBS J ; 289(10): 2793-2804, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33880875

RESUMEN

Many macromolecular X-ray and cryo-EM structure models deposited in the PDB contain biologically relevant small molecule ligands with unsaturated fatty acid acyl chains, whose cis-trans stereochemistry is incorrect. The molecules are either not properly defined in their stereochemical restraint files, or the proper stereochemistry is neglected during model building. Often, the same molecules appear in deposited models in both isomeric configurations, one of which is almost always incorrect, and the use of the same moiety (HET) identifier and restraint files in model refinement is wrong. We present case studies of frequently occurring molecules and a compilation of identified cases of C-C=C-C cis-trans geometry in the deposited structure models. Full listings of cis/trans torsion angles are provided for models with commonly occurring molecules to assist identification and correction of cis-trans errors and prevent inadvertent use of incorrect models. Caveats for users, advice for modellers and suggestions for remediation efforts with a simple but effective restraint file modification are provided.


Asunto(s)
Modelos Moleculares , Isomerismo , Ligandos , Sustancias Macromoleculares/química , Estructura Molecular
2.
Glob Chall ; 3(5): 1900006, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31565377

RESUMEN

Kerogens are extracted from deep shales to study pyrolysis of deep shale samples. The 2D molecular models of kerogens are obtained by a series of physical and chemical experiments by which the macromolecular models of kerogens are constructed. Then, the reasonable 3D macromolecular models are established by molecular mechanics and global energy minimization. The effects of temperature and heating rate on the chemical kinetics of kerogen pyrolysis are studied using reactive force field (ReaxFF). The hybrid molecular dynamics/force-biased Monte Carlo (MD/fbMC) approach is used to simulate the pyrolytic process at the experimental temperature, which is lower than the conventional one. The gaseous products and residues obtained by the simulations agree with the experimental results, which means a reliable simulation method for pyrolysis at experimental temperature is provided. This study constructs the rational macromolecular models of kerogen by experiments, and proposes the mechanisms of typical reactions of kerogen pyrolysis, which may help in understanding the formation of shale oil and gas.

3.
Biochem Mol Biol Educ ; 45(6): 491-500, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28681994

RESUMEN

The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical models to address student understanding of electrostatics and noncovalent interactions and their relationship to macromolecular structure. In this study, we have tested these models in classroom settings to determine if these models are effective in engaging students at an appropriate level of difficulty and focusing student attention on the principles of electrostatic attractions. This article describes how to create these unique models for four targeted areas related to macromolecular structure: protein secondary structure, protein tertiary structure, membrane protein solubility, and DNA structure. We also provide evidence that merits their use in classroom settings based on the analysis of assembled models and a behavioral assessment of students enrolled in an introductory biochemistry course. By providing students with three-dimensional models that can be physically manipulated, barriers to understanding representations of these complex structures can be lowered and the focus shifted to addressing the foundational concepts behind these properties. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):491-500, 2017.


Asunto(s)
ADN/química , Sustancias Macromoleculares/química , Proteínas/química , Estudiantes/psicología , Universidades , Humanos , Modelos Moleculares , Estructura Molecular
4.
Biochem Mol Biol Educ ; 45(1): 69-75, 2017 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-27486685

RESUMEN

A thorough understanding of the molecular biosciences requires the ability to visualize and manipulate molecules in order to interpret results or to generate hypotheses. While many instructors in biochemistry and molecular biology use visual representations, few indicate that they explicitly teach visual literacy. One reason is the need for a list of core content and competencies to guide a more deliberate instruction in visual literacy. We offer here the second stage in the development of one such resource for biomolecular three-dimensional visual literacy. We present this work with the goal of building a community for online resource development and use. In the first stage, overarching themes were identified and submitted to the biosciences community for comment: atomic geometry; alternate renderings; construction/annotation; het group recognition; molecular dynamics; molecular interactions; monomer recognition; symmetry/asymmetry recognition; structure-function relationships; structural model skepticism; and topology and connectivity. Herein, the overarching themes have been expanded to include a 12th theme (macromolecular assemblies), 27 learning goals, and more than 200 corresponding objectives, many of which cut across multiple overarching themes. The learning goals and objectives offered here provide educators with a framework on which to map the use of molecular visualization in their classrooms. In addition, the framework may also be used by biochemistry and molecular biology educators to identify gaps in coverage and drive the creation of new activities to improve visual literacy. This work represents the first attempt, to our knowledge, to catalog a comprehensive list of explicit learning goals and objectives in visual literacy. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):69-75, 2017.


Asunto(s)
Bioquímica/educación , Gráficos por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje , Biología Molecular/educación , Imagen Molecular/métodos , Proteínas/química , Objetivos , Humanos , Modelos Educacionales , Modelos Moleculares , Estudiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA