Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Welf ; 33: e13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510418

RESUMEN

Although sheep are commonly transported long distances, and sheep welfare during transport is a topic of research and policy discussion, the subject of their fatigue during transport has been under-researched. The current qualitative study, focused on the EU and UK, aimed to critically analyse stakeholder views on issues relating to sheep fatigue, including behavioural indications of fatigue, the interplay between fatigue and other factors, and the practicalities of identifying fatigue in commercial transport conditions. Insight into stakeholder perceptions of these issues could contribute to the body of knowledge regarding sheep fatigue during transport, potentially playing a part in future efforts to improve fatigue understanding and detection. Eighteen experts from different stakeholder groups were interviewed. Reflexive thematic analysis of interview data yielded four themes and three sub-themes. The first theme, "Let's anthropomorphise it a little bit", underscores the pervasiveness of anthropomorphism and suggests using it in a conscious and deliberate way to drive stakeholder engagement and policy change. The second theme, "We think that they're like we are and they're not", cautions against wholesale transfer of human experiences to animals. The third theme, 'See the whole animal', advocates using Qualitative Behaviour Analysis (QBA), proven reliable in other contexts, to deepen and enrich our current understanding of fatigue. The fourth theme, 'Fatigue "never comes up"', highlights the fact that fatigue is rarely if ever discussed in the context of sheep transport. These themes suggest several avenues for future research, including developing QBA-based assessments for fatigue to improve welfare during transport.

2.
Antioxidants (Basel) ; 13(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38397796

RESUMEN

Transport out of the water is one of the most challenging events for juvenile Perna canaliculus and can be a highly inefficient process, with many juveniles subsequently being lost following extended periods of emersion. Hardening techniques offer a possible method for reducing transport-related stress. In this study, different hardening treatments (short, long and intermittent sub-lethal emersion) were used to prepare ~1.2 mm P.canaliculus for transport (20 h) and subsequent reoxygenation stress during re-immersion (i.e., recovery). The oxidative stress responses, resettlement behaviour, respiration rates and survival of the mussels after transport and during recovery were all assessed. Short emersion (1 h) as a hardening treatment prior to transport did not cause major stress to the mussels, which maintained respiration at control levels, showed significantly stimulated antioxidant defences during recovery, showed greater resettlement behaviour and remained viable after 24 h of recovery. In comparison, the long and intermittent emersion treatments negatively impacted oxidative stress responses and affected the viability of the mussels after 24 h of recovery. This study showed that exposing juvenile P.canaliculus to a mild stress prior to transport may stimulate protective mechanisms, therefore eliciting a hardening response, but care must be taken to avoid overstressing the mussels. Improving the management of stress during the transport of juvenile mussels may be key to minimising mussel losses and increasing harvest production, and biomarkers associated with oxidative stress/antioxidant metabolism could be valuable tools to ensure emersion hardening does not overstress the mussels and reduce survival.

3.
Biology (Basel) ; 12(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37372054

RESUMEN

This study investigated the effects of NH3-N on antioxidant responses, histoarchitecture, and immunity of Japanese seabass (Lateolabrax japonicus) during keep-live transport. The findings suggest that NH3-N stress transport alters the transcription of P53, Caspase 9, Bcl2, Caspase 3 and Bax genes, demonstrating that NH3-N stress can trigger the apoptotic pathway of P53-Bax-Bcl2 and Caspase and induce apoptosis. NH3-N stress transport also evoked transcriptional upregulation of inflammatory cytokines (tumor necrosis factor α (TNF-α), Toll-like receptor 3 (TLR-3), nuclear factor kappa ß (NF-κB), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß)) and increased complement C3, C4, lysozyme (LZM) and immunoglobulin (IgM) levels, activating the innate immunological system during keep-live transport. In addition, NH3-N stress transport altered changes in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione-related enzymes, and heat shock proteins 70 and 90 in the liver, indicating that the antioxidant system and Hsp protected the cells from NH3-N-induced oxidative stress. When excess ROS were not removed, they caused the body to respond with immunological and inflammatory responses, as well as apoptosis and tissue damage. This helps towards understanding the effect of NH3-N levels on sea bass during keep-live transport.

4.
J Sci Food Agric ; 103(8): 3882-3895, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36324190

RESUMEN

BACKGROUND: Shrimp is one of the most popular marine foods consumed throughout the world and its freshness is a crucial indicator for consumers. However, the flesh quality degradation of shrimp during waterless live transport has been observed and the underlying mechanism remains unknown. RESULTS: The present study aimed to clarify the biochemistry mechanisms of flesh degradation with integration of quality evaluation, metabolic profiling and histopathological analysis. The flesh quality indicators such as water holding capacity, protein and lipid contents, amino acid composition and myofiber components degraded with the prolongation of combined stress. In addition, the metabolites including gamma-aminobutyric acid, Val-Ala, Trh and derivatives of carnitine, phosphocholine and prostaglandin all reduced significantly under combined stress (P < 0.05). Furthermore, Kyoto Encyclopedia of Genes and Genomes (https://www.genome.jp/kegg) analysis revealed the enrichment of neuroactive ligand-receptor interaction and estrogen signaling pathways, indicating the involvement of neuroendocrine in stress response. Moreover, architecture impairment in hepatopancreas tissue verified the accumulation of metabolic disturbance. CONCLUSION: Taken together, the findings of the present study indicate that neuroendocrine system mediates the flesh degradation of L. vannamei during waterless transport by disturbing the biochemical metabolic pathways and inducing architecture impairment of myofibril components. © 2022 Society of Chemical Industry.


Asunto(s)
Penaeidae , Penaeidae/química , Penaeidae/metabolismo , Almacenamiento de Alimentos/métodos , Agua , Animales , Metabolómica , Estrés Fisiológico , Músculos/metabolismo , Transducción de Señal , Hepatopáncreas/química , Hepatopáncreas/metabolismo
5.
Animals (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35158663

RESUMEN

This study was conducted to enhance the viability and alleviate the oxidative stress response using MO for sea bass during live transport. Six experimental groups were designed, and the effects of the physiological responses of MO were evaluated in comparison with MS-222 and eugenol. The physiological stress levels, proprotein convertase subtilisin/kexin type 9 (PCSK-9), antioxidant enzyme activities, and kidney parameters of blood serum were determined. It was found that cortisol level, glucose (Glu), lactic acid (LD), heat shock proteins (HSPs), catalase (CAT), myeloperoxidase (MPO), glutathione peroxidase (GSH-Px), uric acid (UA), and urea nitrogen (BUN) in the MO-treated samples were lower than that of the control (133.72 ng/L); however, the total antioxidant capacity (T-AOC) was higher after 72 h of the simulated live transport. The ability to resist oxidative stress increased along with the increase in the MO concentration in the water during live transport, which was similar to the results of MS-222 and eugenol treatment. In conclusion, MO, acting as a kind of novel sedative and anesthetic, can be used to improve the oxidative system and survival rate during live transport. The results of this study provide a reference for enhancing animal welfare and anti-oxidative stress ability, reducing mortality and the stress response during live fish transport.

6.
J Therm Biol ; 104: 103149, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35180954

RESUMEN

Maintaining the homeostasis of energy metabolism is crucial for organism's stress tolerance and survival. Acute cold exposure (AC) and waterless duration (WD) represent the two predominate abiotic stressors during waterless live transport of Litopenaeus vannamei. Although previous reports have explored the physiological response of L. vannamei to combined stress AC + WD, the roles of energy metabolism response in regulation of stress tolerance remains unknown. The present study comparatively examined the variations of energy metabolism-related indicators in hemolymph (cortisol, hemocyanin, glucose and lactate), hepatopancreas and muscle tissues (levels of lactate and glycogen, activities of hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and adenosine triphosphatase (ATPase), and ATP levels). Combined stress significantly disturbed the homeostasis of energy metabolism with the increase in levels of hemocyanin, glucose and lactate, and decrease in glycogen and ATP content (P < 0.05). In addition, the activities of HK, PFK, PK, and SDH initially elevated and then decreased with the prolongation of combined stress from 3h to 9h duration, while the activity of lactate dehydrogenase (LDH) remained gradual elevation and ATPase activity decreased in a duration time dependent manner throughout the experiment. These alterations revealed that exposure to combined stress could accelerate anaerobic metabolism at initial stage and inhibit aerobic metabolism in a duration time-dependent manner, following with the reduction of energy biosynthesis and the disturbance of energy metabolism equilibrium. On the other hand, the progressive impairment on hepatopancreas tissue was observed under combined stress. In summary, the deficiency of ATP supply and histopathological injures on hepatopancreas tissue might the underlying mechanisms inducing mortality of L. vannamei during live transport.


Asunto(s)
Metabolismo Energético , Penaeidae/fisiología , Estrés Fisiológico/fisiología , Anaerobiosis , Animales , Glucosa/metabolismo , Glucógeno/metabolismo , Hemolinfa/metabolismo , Hepatopáncreas/metabolismo , Homeostasis , L-Lactato Deshidrogenasa/metabolismo , Músculos/metabolismo , Penaeidae/metabolismo
7.
Animals (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34573646

RESUMEN

China is the largest food fish producer in the world. Chinese consumers normally purchase fish that are still alive to ensure freshness. Therefore, the live transport of fish is important in China's aquaculture, although it carries potential risks for animal welfare. This study investigated the attitudes and knowledge of stakeholders within Chinese aquaculture towards the live transport and welfare of fish. Semi-structured interviews were conducted with 12 participants who were involved with the aquaculture industry in China. Most participants self-rated their transport-related knowledge as moderate and had some understanding of animal welfare, although this term was generally considered only relevant to terrestrial animals. Participants' responses indicated that the live transport of fish occurs frequently in China, generally using sealed tanks, plastic bags, and foam boxes, in purpose-built vehicles. Seasonal changes, such as changes in ambient and water temperature, are considered to be important contributors to successful live transport, as well as sufficient oxygen supplies and stocking density. The use of anesthetics was not commonly reported, particularly in food fish, and fish capture is predominantly by conventional dipnets. The health status of transported fish is determined mostly by morphology (body injury, body or eye color, and fin condition), as well as vigor and swimming ability. Our results indicate that live transport poses a number of welfare risks to fish but that participants in the process associated welfare concerns more with terrestrial animals, not fish.

8.
Biology (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35053009

RESUMEN

In the current study, Melissa officinalis L. essential oil (MOEO), a novel sedative and anaesthetic, was employed in transport water to obtain a lower stress effect and higher survival rate for live marine fish. The effect of MOEO and various types of anaesthetics, administered at a low temperature on gill morphology, liver function and immunological parameters of living sea bass (Lateolabrax maculatus) subjected to transport stress, was evaluated to optimize the anaesthetic and sedative concentrations during live sea bass transport. Light microscopy and scanning electron microscopy of sea bass, subjected to simulated live transport for 72 h, demonstrated that the changes in the morphological characteristics of gill tissue treated with 40 mg/L MOEO (A3 group) were minimal in comparison to those observed in untreated sea bass. The results of pyruvate kinase (PK), phosphofructokinase (PFK), hexokinase (HK), hepatic glycogen (Gly), superoxide dismutase (SOD), lipid peroxides (MDA) and Caspase-3 assays indicated that the glycolysis rate, energy consumption, lipid peroxidation and hepatocyte apoptosis were the lowest in the A3 group. The values of the two immune parameters, lysozyme (LZM) and fish immunoglobulin M (IgM), indicated the strongest immunity ability in the A3 group. After 12 h recovery, sea bass treated with 30 mg/L MS-222 (B group) displayed a 100% survival rate, sea bass treated with 20 mg/L (A2 group) and 40 mg/L (A3 group) MOEO displayed a 96% survival rate, sea bass treated with 20 mg/L eugenol (C group) had a 94% survival rate, and untreated sea bass (CK group) had a 50% survival rate. Therefore, the addition MOEO to the transport water had anaesthetic and sedative effects similar to MS-222 and eugenol. The results confirmed that the addition of MOEO to the transport water could reduce tissue damage, energy metabolism, and the oxidative stress response in sea bass during transport.

9.
Ecotoxicol Environ Saf ; 115: 291-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25499691

RESUMEN

In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries.


Asunto(s)
Nephropidae/efectos de los fármacos , Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Explotaciones Pesqueras , Hepatopáncreas/efectos de los fármacos , Masculino , Organotiofosfatos/toxicidad , Agua de Mar , Tasa de Supervivencia
10.
Artículo en Inglés | MEDLINE | ID: mdl-23973259

RESUMEN

The recent demand for live seafood has made Lithodes santolla a potential candidate for the live crab market. Since live transport implies long aerial exposure times, the present study determined the tolerance of L. santolla to aerial exposure and also explored the physiological status of L. santolla after six different aerial exposure times: 0, 10, 20, 30, 40 and 50h. No mortalities were recorded during emersion periods shorter than 40 h, however, all hemolymph parameters were modulated by aerial exposure. Hemolymph dissolved oxygen and pH were inversely related with the aerial exposure time (-0.016 mg L(-1) h(-1) and -0.018 h(-1), respectively), while oxyhemocyanin and hemolymph protein were positively correlated (0.006 mmol L(-1) h(-1) and 0.487 mg mL(-1) h(-1), respectively). Oxygen consumption at re-immersion was affected by aerial exposure time, with low values in animals emersed for longer than 30 h. We postulate that the unexpected high tolerance of L. santolla to aerial exposure is mainly related to adaptations to hypoxia, developed to overcome hypoxic events in their natural environment in deep water. The present findings are not only important for understanding L. santolla's physiology, but also provide the first evaluation of the potential marketing of southern king crab as live seafood.


Asunto(s)
Aire , Braquiuros/metabolismo , Hemolinfa/metabolismo , Adaptación Fisiológica , Animales , Masculino , Oxígeno , Consumo de Oxígeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA