Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros











Intervalo de año de publicación
1.
Carbohydr Polym ; 346: 122600, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245488

RESUMEN

Panax ginseng C. A. Meyer (ginseng) is a medicinal plant widely used for promoting longevity. Recently, homogalacturonan (HG) domain-rich pectins purified from some plants have been reported to have anti-aging-related activities, leading us to explore the longevity-promoting activity of the HG pectins from ginseng. In this study, we discovered that two of low methyl-esterified ginseng HG pectins (named as WGPA-2-HG and WGPA-3-HG), whose degree of methyl-esterification (DM) was 16 % and 8 % respectively, promoted longevity in Caenorhabditis elegans. Results showed that WGPA-2-HG/WGPA-3-HG impaired insulin/insulin-like growth factor 1 (IGF-1) signalling (IIS) pathway, thereby increasing the nuclear accumulation of transcription factors SKN-1/Nrf2 and DAF-16/FOXO and enhancing the expression of relevant anti-aging genes. BLI and ITC analysis showed that the insulin-receptor binding, the first step to activate IIS pathway, was impeded by the engagement of WGPA-2-HG/WGPA-3-HG with insulin. By chemical modifications, we found that high methyl-esterification of WGPA-2-HG/WGPA-3-HG was detrimental for their longevity-promoting activity. These findings provided novel insight into the precise molecular mechanism for the longevity-promoting effect of ginseng pectins, and suggested a potential to utilize the ginseng HG pectins with appropriate DM values as natural nutrients for increasing human longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Factor I del Crecimiento Similar a la Insulina , Insulina , Longevidad , Panax , Pectinas , Transducción de Señal , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Panax/química , Factor I del Crecimiento Similar a la Insulina/metabolismo , Pectinas/farmacología , Pectinas/metabolismo , Pectinas/química , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Insulina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Esterificación
2.
Cell Mol Life Sci ; 81(1): 407, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287670

RESUMEN

Extension of the replicative lifespan of primary cells can be achieved by activating human telomerase reverse transcriptase (hTERT) to maintain sufficient telomere lengths. In this work, we utilize CRISPR/dCas9-based epigenetic modifiers (p300 histone acetyltransferase and TET1 DNA demethylase) and transcriptional activators (VPH and VPR) to reactivate the endogenous TERT gene in unstimulated T cells in the peripheral blood mononuclear cells (PBMCs) by rewiring the epigenetic marks of the TERT promoter. Importantly, we have successfully expanded resting T cells and delayed their cellular senescence for at least three months through TERT reactivation, without affecting the expression of a T-cell marker (CD3) or inducing an accelerated cell division rate. We have also demonstrated the effectiveness of these CRISPR tools in HEK293FT and THP-1-derived macrophages. TERT reactivation and replicative senescence delay were achieved without inducing malignancy transformation, as shown in various cellular senescence assays, cell cycle state, proliferation rate, cell viability, and karyotype analyses. Our chromatin immunoprecipitation (ChIP)-qPCR data together with TERT mRNA and protein expression analyses confirmed the specificity of CRISPR-based transcription activators in modulating epigenetic marks of the TERT promoter, and induced telomerase expression. Therefore, the strategy of cell immortalization described here can be potentially adopted and generalized to delay cell death or even immortalize any other cell types.


Asunto(s)
Sistemas CRISPR-Cas , Senescencia Celular , Epigénesis Genética , Regiones Promotoras Genéticas , Linfocitos T , Telomerasa , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Sistemas CRISPR-Cas/genética , Senescencia Celular/genética , Regiones Promotoras Genéticas/genética , Linfocitos T/metabolismo , Linfocitos T/citología , Células HEK293 , Proliferación Celular/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38941028

RESUMEN

Chronic stress has been linked to a large number of pathologies, including cancer, premature aging, and neurodegenerative diseases. The accumulation of molecular waste resulting from oxidative and heavy metal-induced stress has been ascribed as a major factor contributing to these diseases. With this in mind, we started by screening 13 small molecules to determine their antistress potential in heavy metal stress-exposed C6 glioblastoma and found that alpha-lipoic acid (ALA) (a natural antioxidant abundantly present in yeast, spinach, broccoli, and meat) was the most effective candidate. We then conducted molecular analyses to validate its mechanism of action. Dose-dependent toxicity assays of cells treated with two ALA enantiomers, R-ALA and S-ALA, showed that they are nontoxic and can be tolerated at relatively high doses. Cells exposed to heavy metal, heat, and oxidative stress showed better recovery when cultured in R-ALA-/S-ALA-supplemented medium, supported by reduction of reactive oxygen species (ROS), aggregated proteins, and mitochondrial and deoxyribonucleic acid (DNA) damage. Molecular analyses revealed protection against stress-induced apoptosis and induction of autophagy in R-ALA- and S-ALA-treated C6/U2OS cells. Consistent with these findings, normal human fibroblasts showed lifespan extension. Taken together, this study demonstrates that lipoic acid has antiaging and antistress potential and warrants further attention in laboratory and clinical studies.

4.
Pharmaceuticals (Basel) ; 17(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38931380

RESUMEN

Pearl oysters have been extensively utilized in pearl production; however, most pearl oyster shells are discarded as industrial waste. In a previous study, we demonstrated that the intraperitoneal administration of pearl oyster shell-derived nacre extract (NE) prevented d-galactose-induced brain and skin aging. In this study, we examined the anti-aging effects of orally administered NE in senescence-accelerated mice (SAMP8). Feeding SAMP8 mice NE prevented the development of aging-related characteristics, such as coarse and dull hair, which are commonly observed in aged mice. Additionally, the NE mitigated muscle aging in SAMP8 mice, such as a decline in grip strength. Histological analysis of skeletal muscle revealed that the NE suppressed the expression of aging markers, cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1 (p21), and increased the expression of sirtuin1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)- α, which are involved in muscle synthesis. These findings suggest that the oral administration of NE suppresses skeletal muscle aging. Moreover, NE administration suppressed skin aging, including a decline in water content. Interestingly, oral administration of NE significantly extended the lifespan of SAMP8 mice, suggesting that its effectiveness as an anti-aging agent of various tissues including skeletal muscle, skin, and adipose tissue.

5.
Biomedicines ; 11(10)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37893199

RESUMEN

The relationship between polyamines and healthy longevity has received much attention in recent years. However, conducting research without understanding the properties of polyamines can lead to unexpected pitfalls. The most fundamental consideration in conducting polyamine studies is that bovine serum used for cell culture contains bovine serum amine oxidase. Bovine serum amine oxidase, which is not inactivated by heat treatment, breaks down spermine and spermidine to produce the highly toxic aldehyde acrolein, which causes cell damage and activates autophagy. However, no such enzyme activity has been found in humans. Polyamine catabolism does not produce toxic aldehydes under normal conditions, but inflammation and some pathogens provoke an inducible enzyme, spermine oxidase, which only breaks down spermine to produce acrolein, resulting in cytotoxicity and the activation of autophagy. Therefore, spermine oxidase activation reduces spermine concentration and the ratio of spermine to spermidine, a feature recently reported in patients with age-related diseases. Spermine, which is increased by a long-term, continuous high polyamine diet, suppresses aberrant gene methylation and the pro-inflammatory status that progress with age and are strongly associated with the development of several age-related diseases and senescence. Changes in spermine concentration and the spermine/spermidine ratio should be considered as indicators of human health status.

6.
Front Aging ; 4: 1031161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731965

RESUMEN

The dauer larva is a specialized stage of worm development optimized for survival under harsh conditions that have been used as a model for stress resistance, metabolic adaptations, and longevity. Recent findings suggest that the dauer larva of Caenorhabditis elegans may utilize external ethanol as an energy source to extend their lifespan. It was shown that while ethanol may serve as an effectively infinite source of energy, some toxic compounds accumulating as byproducts of its metabolism may lead to the damage of mitochondria and thus limit the lifespan of larvae. A minimal mathematical model was proposed to explain the connection between the lifespan of a dauer larva and its ethanol metabolism. To explore theoretically if it is possible to extend even further the lifespan of dauer larvae, we incorporated two natural mechanisms describing the recovery of damaged mitochondria and elimination of toxic compounds, which were previously omitted in the model. Numerical simulations of the revised model suggested that while the ethanol concentration is constant, the lifespan still stays limited. However, if ethanol is supplied periodically, with a suitable frequency and amplitude, the dauer could survive as long as we observe the system. Analytical methods further help to explain how feeding frequency and amplitude affect lifespan extension. Based on the comparison of the model with experimental data for fixed ethanol concentration, we proposed the range of feeding protocols that could lead to even longer dauer survival and it can be tested experimentally.

7.
Front Microbiol ; 14: 1138979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601381

RESUMEN

Escherichia coli (E. coli) mutant strains have been reported to extend the life span of Caenorhabditis elegans (C. elegans). However, the specific mechanisms through which the genes and pathways affect aging are not yet clear. In this study, we fed Drosophila melanogaster (fruit fly) various E. coli single-gene knockout strains to screen mutant strains with an extended lifespan. The results showed that D. melanogaster fed with E. coli purE had the longest mean lifespan, which was verified by C. elegans. We conducted RNA-sequencing and analysis of C. elegans fed with E. coli purE (a single-gene knockout mutant) to further explore the underlying molecular mechanism. We used differential gene expression (DGE) analysis, enrichment analysis, and gene set enrichment analysis (GSEA) to screen vital genes and modules with significant changes in overall expression. Our results suggest that E. coli mutant strains may affect the host lifespan by regulating the protein synthesis rate (cfz-2) and ATP level (catp-4). To conclude, our study could provide new insights into the genetic influences of the microbiota on the life span of a host and a basis for developing anti-aging probiotics and drugs.

8.
Aging (Albany NY) ; 15(13): 6073-6099, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37450404

RESUMEN

Recently, there has been a growing interest in the development of pharmacological interventions targeting ageing, as well as in the use of machine learning for analysing ageing-related data. In this work, we use machine learning methods to analyse data from DrugAge, a database of chemical compounds (including drugs) modulating lifespan in model organisms. To this end, we created four types of datasets for predicting whether or not a compound extends the lifespan of C. elegans (the most frequent model organism in DrugAge), using four different types of predictive biological features, based on: compound-protein interactions, interactions between compounds and proteins encoded by ageing-related genes, and two types of terms annotated for proteins targeted by the compounds, namely Gene Ontology (GO) terms and physiology terms from the WormBase's Phenotype Ontology. To analyse these datasets, we used a combination of feature selection methods in a data pre-processing phase and the well-established random forest algorithm for learning predictive models from the selected features. In addition, we interpreted the most important features in the two best models in light of the biology of ageing. One noteworthy feature was the GO term "Glutathione metabolic process", which plays an important role in cellular redox homeostasis and detoxification. We also predicted the most promising novel compounds for extending lifespan from a list of previously unlabelled compounds. These include nitroprusside, which is used as an antihypertensive medication. Overall, our work opens avenues for future work in employing machine learning to predict novel life-extending compounds.


Asunto(s)
Caenorhabditis elegans , Longevidad , Aprendizaje Automático , Longevidad/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Envejecimiento , Glutatión/análisis , Oxidación-Reducción , Ontología de Genes , Algoritmos , Bases de Datos Farmacéuticas
9.
Nutr Res Rev ; : 1-10, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37469212

RESUMEN

Age is a risk factor for numerous diseases. Although the development of modern medicine has greatly extended the human lifespan, the duration of relatively healthy old age, or 'healthspan', has not increased. Targeting the detrimental processes that can occur before the onset of age-related diseases can greatly improve health and lifespan. Healthspan is significantly affected by what, when and how much one eats. Dietary restriction, including calorie restriction, fasting or fasting-mimicking diets, to extend both lifespan and healthspan has recently attracted much attention. However, direct scientific evidence that consuming specific foods extends the lifespan and healthspan seems lacking. Here, we synthesized the results of recent studies on the lifespan and healthspan extension properties of foods and their phytochemicals in various organisms to confirm how far the scientific research on the effect of food on the lifespan has reached.

10.
Ageing Res Rev ; 89: 101985, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321382

RESUMEN

Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Autofagia/fisiología , Enfermedad de Parkinson/genética , Envejecimiento , Lisosomas , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
11.
J Gerontol A Biol Sci Med Sci ; 78(11): 1953-1963, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37354128

RESUMEN

Calorie restriction (CR) typically promotes a reduction in body mass, which correlates with increased lifespan. We evaluated the overall changes in survival, body mass dynamics, and body composition following long-term graded CR (580 days/19 months) in male C57BL/6J mice. Control mice (0% restriction) were fed ad libitum in the dark phase only (12-hour ad libitum [12AL]). CR groups were restricted by 10%-40% of their baseline food intake (10CR, 20CR, 30CR, and 40CR). Body mass was recorded daily, and body composition was measured at 8 time points. At 728 days/24 months, all surviving mice were culled. A gradation in survival rate over the CR groups was found. The pattern of body mass loss differed over the graded CR groups. Whereas the lower CR groups rapidly resumed an energy balance with no significant loss of fat or fat-free mass, changes in the 30 and 40CR groups were attributed to higher fat-free mass loss and protection of fat mass. Day-to-day changes in body mass were less variable under CR than for the 12AL group. There was no indication that body mass was influenced by external factors. Partial autocorrelation analysis examined the relationship between daily changes in body masses. A negative correlation between mass on Day 0 and Day +1 declined with age in the 12AL but not the CR groups. A reduction in the correlation with age suggested body mass homeostasis is a marker of aging that declines at the end of life and is protected by CR.


Asunto(s)
Composición Corporal , Restricción Calórica , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Envejecimiento , Longevidad
12.
Exp Gerontol ; 178: 112228, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37271408

RESUMEN

Studies have identified that mating induces a series of physiological changes in animals. In this period, males tending to invest more energy, immune peptides, and other substances to reduce the cost of living for females. This results in lower survival rates in later life than females. Meanwhile, both males and females shorten lifespans due to reproduction. However, the reasons why termites' queens and kings are both extremely long-lived and highly fecund are unclear. Therefore, this study aimed to examine the effects of mating on the expression of immune and DNA repair genes for lifespan extension in termite queens and kings. Here, we reported that mated queens show relatively higher expression of immune genes (phenoloxidase, denfensin, termicin, transferrin), antioxidant genes (CAT, SOD), detoxification genes (GST, CYP450) than virgin queens in the Reticulitermes chinensis. In addition, mated kings also highly expressed these genes, except for termicin, transferrin, GST, and CYP450. After mating, both queens and kings significantly upregulated the expression of DNA repair genes (MLH1, BRCA1, XRCC3, RAD54-like). Mismatch repair genes (MMR) MSH2, MSH4, MSH6 were considerably increased in mated queens, while MSH4, MSH5, MSH6 were upregulated in mated kings. Our results suggest that mating increases the expression of immune and DNA repair genes in the termite queens and kings, and thus possibly improving their survival during reproductive span due to the omnipresent pathogens.


Asunto(s)
Isópteros , Animales , Femenino , Masculino , Isópteros/genética , Isópteros/metabolismo , Reproducción/genética , Fertilidad , Reparación del ADN , Transferrinas/genética , Transferrinas/metabolismo
13.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37269831

RESUMEN

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Asunto(s)
Longevidad , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Longevidad/genética , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/genética , Mamíferos/genética , Perfilación de la Expresión Génica
14.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37081768

RESUMEN

AIM: Bacillus subtilis var. natto is used in the production of natto, a typical Japanese fermented soybean food. Although the probiotic attributes and health-related effects of B. subtilis var. natto have been reported, the effect on longevity remains unknown. In the present study, the effects of B. subtilis var. natto strains on lifespan extension and the molecular mechanisms governing the prolongevity were examined using Caenorhabditis elegans as a model animal. METHODS AND RESULTS: Synchronized 3-day-old (young adult) worms were fed Escherichia coli OP50 (control) or a subcloned isolate of B. subtilis var. natto Miyagino strain (MI-OMU01) and subjected to lifespan, survival against pathogens and abiotic stress resistance assays. Notably, the lifespan of worms fed MI-OMU01 was significantly longer than that of the animals fed OP50. Moreover, MI-OMU01 increased the resistance of C. elegans to several stressors, including UV irradiation, H2O2, and Cu2+. CONCLUSIONS: Genetic and gene expression analyses using mutant animals suggested that MI-OMU01 extended the lifespan of worms in TIR-1/SARM, p38 MAPK, and insulin/IGF-1 signaling pathway-dependent manners.


Asunto(s)
Caenorhabditis elegans , Longevidad , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peróxido de Hidrógeno/farmacología , Transducción de Señal
15.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37084379

RESUMEN

Retrotransposons are a class of transposable elements capable of self-replication and insertion into new genomic locations. Across species, the mobilization of retrotransposons in somatic cells has been suggested to contribute to the cell and tissue functional decline that occurs during aging. Retrotransposons are broadly expressed across cell types, and de novo insertions have been observed to correlate with tumorigenesis. However, the extent to which new retrotransposon insertions occur during normal aging and their effect on cellular and animal function remains understudied. Here, we use a single nucleus whole genome sequencing approach in Drosophila to directly test whether transposon insertions increase with age in somatic cells. Analyses of nuclei from thoraces and indirect flight muscles using a newly developed pipeline, Retrofind, revealed no significant increase in the number of transposon insertions with age. Despite this, reducing the expression of two different retrotransposons, 412 and Roo, extended lifespan, but did not alter indicators of health such as stress resistance. This suggests a key role for transposon expression and not insertion in regulating longevity. Transcriptomic analyses revealed similar changes to gene expression in 412 and Roo knockdown flies and highlighted changes to genes involved in proteolysis and immune function as potential contributors to the observed changes in longevity. Combined, our data show a clear link between retrotransposon expression and aging.


Asunto(s)
Drosophila , Retroelementos , Animales , Retroelementos/genética , Drosophila/genética , Drosophila melanogaster/genética , Envejecimiento/genética , Genómica
16.
Carbohydr Polym ; 312: 120818, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37059546

RESUMEN

Panax ginseng C. A. Meyer (ginseng), a traditional Chinese herb, is usually used to improve health and increase anti-aging activity for human. Polysaccharides are bioactive components of ginseng. Herein, using Caenorhabditis elegans as a model, we discovered a ginseng-derived rhamnogalacturonan I (RG-I) pectin WGPA-1-RG promoted longevity via TOR signalling pathway with transcription factors FOXO/DAF-16 and Nrf2/SKN-1 accumulated in the nucleus, where they activated target genes. And the WGPA-1-RG-mediated lifespan extension was dependent on endocytosis, rather than a bacterial metabolic process. Glycosidic linkage analyses combined with arabinose- and galactose-releasing enzyme hydrolyses identified the RG-I backbone of WGPA-1-RG was primarily substituted with α-1,5-linked arabinan, ß-1,4-linked galactan and arabinogalactan II (AG-II) side chains. Feeding worms with the WGPA-1-RG-derived fractions which lost distinct structural elements by enzymatic digestions, we found the arabinan side chains prominently contributed to the longevity-promoting activity of WGPA-1-RG. These findings provide a novel ginseng-derived nutrient that potentially increases human longevity.


Asunto(s)
Caenorhabditis elegans , Panax , Animales , Humanos , Longevidad , Panax/química , Pectinas/farmacología , Pectinas/química
17.
Molecules ; 28(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903481

RESUMEN

Polygonati Rhizoma is the dried rhizome of Polygonatum kingianum coll.et hemsl., Polygonatum sibiricum Red. or Polygonatum cyrtonema Hua, and has a long history of medication. Raw Polygonati Rhizoma (RPR) numbs the tongue and stings the throat, while prepared Polygonati Rhizoma (PPR) can remove the numbness of the tongue, and at the same time enhance its functions of invigorating the spleen, moistening the lungs and tonifying the kidneys. There are many active ingredients in Polygonati Rhizoma (PR), among which polysaccharide is one of the most important active ingredients. Therefore, we studied the effect of Polygonati Rhizoma polysaccharide (PRP) on the lifespan of Caenorhabditis elegans (C. elegans) and found that polysaccharide in PPR (PPRP) was more effective than Polysaccharide in RPR (RPRP) in prolonging the lifespan of C. elegans, reducing the accumulation of lipofuscin, and increasing the frequency of pharyngeal pumping and movement. The further mechanism study found that PRP can improve the anti-oxidative stress ability of C. elegans, reduce the accumulation of reactive oxygen species (ROS) in C. elegans, and improve the activity of antioxidant enzymes. The results of quantitative real-time PCR(q-PCR) experiments suggested that PRP may prolong the lifespan of C. elegans by down-regulating daf-2 and activating daf-16 and sod-3, and the transgenic nematode experiments were consistent with its results, so it was hypothesized that the mechanism of age delaying effect of PRP was related to daf-2, daf-16 and sod-3 of the insulin signaling pathway. In short, our research results provide a new idea for the application and development of PRP.


Asunto(s)
Proteínas de Caenorhabditis elegans , Polygonatum , Animales , Caenorhabditis elegans , Longevidad , Rizoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Polisacáridos/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo
18.
Biochem Biophys Res Commun ; 653: 76-82, 2023 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-36857903

RESUMEN

FK506-sensitive proline rotamase 1 protein (Fpr1p), which is a homologue of the mammalian prolyl isomerase FK506-binding protein of 12 kDa (FKBP12), is known to play important roles in protein folding and prevention of protein aggregation. Although rapamycin is known to bind to Fpr1p to inhibit Tor1p mediated-mechanistic Target Of Rapamycin (mTOR) activity, the physiological functions of Fpr1p on lifespan remain unclear. In this study, we used the eukaryotic model Saccharomyces cerevisiae to demonstrate that deletion of FPR1 reduced yeast chronological lifespan (CLS), and there was no benefit on lifespan upon rapamycin treatment, indicating that lifespan extension mechanism of rapamycin in yeast is exclusively dependent on FPR1. Furthermore, there was a significant increase in CLS of fpr1Δ cells during caloric restriction (CR), suggesting that rapamycin affects lifespan in a different way compared to CR. This study highlights the importance of FPR1 for rapamycin-induced lifespan extension.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Longevidad , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Tacrolimus/metabolismo
19.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597655

RESUMEN

Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.

20.
Biogerontology ; 24(2): 275-292, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662374

RESUMEN

Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-ß-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.


Asunto(s)
Cistationina betasintasa , Sulfuro de Hidrógeno , Masculino , Animales , Femenino , Cistationina betasintasa/genética , Drosophila melanogaster , Cistationina , Paraquat
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA