Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731829

RESUMEN

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Asunto(s)
Lesión Renal Aguda , Proteínas de Ciclo Celular , Túbulos Renales Proximales , Daño por Reperfusión , Animales , Masculino , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Vía de Señalización Hippo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Transducción de Señal
2.
Nat Prod Res ; : 1-6, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652839

RESUMEN

This study was aimed at investigating the ability of extract of Annona muricata (AM) flower-petals in ameliorating the toxic effects of acetaminophen on the kidneys of albino rats. The biochemical results showed a marked increase in AM 200 mg (32.84 ± 0.14) and AM 400 mg (32.64 ± 0.78). Increase levels of total protein in AM 200 mg (77.00 ± 5.65) displays nephroprotective potential of the flower extract. Reduction of renal activities of serum urea in AM 400 mg group (6.41 ± 0.22) indicates its protective potency against acetaminophen induced kidney damage. Increased activities of SOD levels at 200 mg (4.97 ± 0.05) and CAT levels at 200 mg (23.39 ± 1.13). This study showed that A. muricata has good prospects of being a nephroprotective drug candidate.

3.
J Adv Res ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38537702

RESUMEN

INTRODUCTION: With prevalence of chronic kidney disease (CKD) in worldwide, the strategies to recover renal function via tissue regeneration could provide alternatives to kidney replacement therapies. However, due to relatively low reproducibility of renal basal cells and limited bioactivities of implanted biomaterials along with the high probability of substance-inducible inflammation and immunogenicity, kidney tissue regeneration could be challenging. OBJECTIVES: To exclude various side effects from cell transplantations, in this study, we have induced extracellular vesicles (EVs) incorporated cell-free hybrid PMEZ scaffolds. METHODS: Hybrid PMEZ scaffolds incorporating essential bioactive components, such as ricinoleic acid grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) based on biodegradable porous PLGA (P) platform was successfully manufactured. Consecutively, for functional improvements, melatonin-modulated extracellular vesicles (mEVs), derived from the human umbilical cord MSCs in chemically defined media without serum impurities, were also loaded onto PMEZ scaffolds to construct the multiplexed PMEZ/mEV scaffold. RESULTS: With functionalities of Mg(OH)2 and extracellular matrix-loaded PLGA scaffolds, the continuous nitric oxide-releasing property of modified ZnO and remarkably upregulated regenerative functionalities of mEVs showed significantly enhanced kidney regenerative activities. Based on these, the structural and functional restoration has been practically achieved in 5/6 nephrectomy mouse models that mimicked severe human CKD. CONCLUSION: Our study has proved the combinatory bioactivities of the biodegradable PLGA-based multiplexed scaffold for kidney tissue regeneration in 5/6 nephrectomy mouse representing a severe CKD model. The optimal microenvironments for the morphogenetic formations of renal tissues and functional restorations have successfully achieved the combinatory bioactivities of remarkable components for PMEZ/mEV, which could be a promising therapeutic alternative for CKD treatment.

4.
World J Urol ; 42(1): 25, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206410

RESUMEN

PURPOSE: On the new era of stem cell therapy, the present experimental study was conducted to investigate renal regenerative capacity related to kidney stem cell reserve in different nephrectomy (Nx) models. METHODS: Three- and eight-week-old rats (n = 168) were randomly divided into four groups to include control and three Nx subgroups (1/6 Nx, 1/2 Nx, and 5/6 Nx) (Fig. 1). On post-Nx days 15, 30 and 60, kidney specimens were obtained to determine renal regenerative capacity. The specimens were examined with immunofluorescence. CD90/CD105 and Ki-67 expressions were determined as stem cell and cellular proliferation markers, respectively. Fig. 1 Intraoperative photographs showing three different types of nephrectomies (unilateral total Nx has not been shown in 5/6 Nx group) RESULTS: CD90 and CD105 expressions were stronger in glomeruli, but Ki-67 expressions were present only in tubuli. When all Nx types and post-Nx days were considered, both 3- and 8-week-old rats undergone 5/6 Nx had the highest glomerular CD90 and CD105 double expressions. While the expressions gradually increased toward the day 60 in 3-weeks old rats, 8-week-old rats had almost stable double expressions. The strongest tubular Ki-67 expressions were seen in 5/6 Nx groups of both in 3- and 8-week-old rats. The expressions were strongest on day 15 and then gradually decreased. Ipsilateral 1/6 Nx groups had stronger Ki-67 expression than contralateral ones in both age groups. CONCLUSIONS: Kidneys may pose a regenerative response to tissue/volume loss through its own CD90- and CD105-related stem cell reserve which mainly takes place in glomeruli and seems to have some interactions with Ki-67-related tubular proliferative process. This response supports that kidney stem cells may have a potential to overcome tissue/volume loss-related damage.


Asunto(s)
Riñón , Células Madre , Animales , Ratas , Antígeno Ki-67 , Nefrectomía , Proliferación Celular
6.
Mol Ther Methods Clin Dev ; 29: 329-346, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214315

RESUMEN

Upscaling of kidney epithelial cells is crucial for renal regenerative medicine. Nonetheless, the adult kidney lacks a distinct stem cell hierarchy, limiting the ability to long-term propagate clonal populations of primary cells that retain renal identity. Toward this goal, we tested the paradigm of shifting the balance between differentiation and stemness in the kidney by introducing a single pluripotency factor, OCT4. Here we show that ectopic expression of OCT4 in human adult kidney epithelial cells (hKEpC) induces the cells to dedifferentiate, stably proliferate, and clonally emerge over many generations. Control hKEpC dedifferentiate, assume fibroblastic morphology, and completely lose clonogenic capacity. Analysis of gene expression and histone methylation patterns revealed that OCT4 represses the HNF1B gene module, which is critical for kidney epithelial differentiation, and concomitantly activates stemness-related pathways. OCT4-hKEpC can be long-term expanded in the dedifferentiated state that is primed for renal differentiation. Thus, when expanded OCT4-hKEpC are grown as kidney spheroids (OCT4-kSPH), they reactivate the HNF1B gene signature, redifferentiate, and efficiently generate renal structures in vivo. Hence, changes occurring in the cellular state of hKEpC following OCT4 induction, long-term propagation, and 3D aggregation afford rapid scale-up technology of primary renal tissue-forming cells.

8.
J Pathol ; 259(2): 149-162, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373978

RESUMEN

Scattered tubular cells (STCs) are a phenotypically distinct cell population in the proximal tubule that increase in number after acute kidney injury. We aimed to characterize the human STC population. Three-dimensional human tissue analysis revealed that STCs are preferentially located within inner bends of the tubule and are barely present in young kidney tissue (<2 years), and their number increases with age. Increased STC numbers were associated with acute tubular injury (kidney injury molecule 1) and interstitial fibrosis (alpha smooth muscle actin). Isolated CD13+ CD24- CD133- proximal tubule epithelial cells (PTECs) and CD13+ CD24+ and CD13+ CD133+ STCs were analyzed using RNA sequencing. Transcriptome analysis revealed an upregulation of nuclear factor κB, tumor necrosis factor alpha, and inflammatory pathways in STCs, whereas metabolism, especially the tricarboxylic acid cycle and oxidative phosphorylation, was downregulated, without showing signs of cellular senescence. Using immunostaining and a publicly available single-cell sequencing database of human kidneys, we demonstrate that STCs represent a heterogeneous population in a transient state. In conclusion, STCs are dedifferentiated PTECs showing a metabolic shift toward glycolysis, which could facilitate cellular survival after kidney injury. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/patología , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Células Epiteliales , Glucólisis
9.
Kidney Res Clin Pract ; 42(1): 53-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36328990

RESUMEN

The current standard of care for patients with end-stage renal disease (ERSD) is a kidney transplant or dialysis when a donor organ isnot available. The growing gap between patients who require a kidney transplant and the availability of donor organs as well as thenegative effects of long-term dialysis, such as infection, limited mobility, and risk of cancer development, drive the impetus to developalternative renal replacement technology. The goal of this review is to assess the potential of two of the most recent innovations inkidney transplant technology-the implantable bioartificial kidney (BAK) and kidney regeneration technology-in addressing the aforementionedproblems related to kidney replacement for patients with ERSD. Both innovations are fully implantable, autologous, personalizedwith patient cells, and can replace all aspects of kidney function. Not only do these new innovations have the potential toimprove the possibility of transplantation for more patients, they also have potential to improve the outcome of transplantation or dialysis-related renal cancer diagnosis. A major limitation of the current technology is that both implantable BAK and kidney regenerationtechnology are still in preclinical stages, and thus their potential effects cannot be comprehensively generalized to human patients.

10.
Medicina (Kaunas) ; 60(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38256324

RESUMEN

Background and Objectives: To date, the therapeutic potential of skeletal muscle-derived stem/progenitor cells (MDSPCs) for acute kidney injury (AKI) has only been evaluated by our research group. We aimed to compare MDSPCs with bone marrow mesenchymal stem cells (BM-MSCs) and evaluate their feasibility for the treatment of AKI. Materials and Methods: Rats were randomly assigned to four study groups: control, GM (gentamicin) group, GM+MDSPCs, and GM+BM-MSCs. AKI was induced by gentamicin (80 mg/kg/day; i.p.) for 7 consecutive days. MDSPCs and BM-MSCs were injected 24 h after the last gentamicin injection. Kidney parameters were determined on days 0, 8, 14, 21, and 35. Results: MDSPCs and BM-MSCs accelerated functional kidney recovery, as reflected by significantly lower serum creatinine levels and renal injury score, higher urinary creatinine and creatinine clearance levels (p < 0.05), lower TUNEL-positive cell number, and decreased KIM-1 and NGAL secretion in comparison to the non-treated AKI group. There was no significant difference in any parameters between the MDSPCs and BM-MSCs groups (p > 0.05). Conclusions: MDSPCs and BM-MSCs can migrate and incorporate into injured renal tissue, resulting in a beneficial impact on functional and morphological kidney recovery, which is likely mediated by the secretion of paracrine factors and an anti-apoptotic effect. MDSPCs were found to be non-inferior to BM-MSCs and therefore can be considered as a potential candidate strategy for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Células Madre Mesenquimatosas , Animales , Ratas , Creatinina , Lesión Renal Aguda/terapia , Gentamicinas , Músculos
11.
J Clin Med ; 11(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36498811

RESUMEN

To align the xeno-metanephros and renal progenitor cell timing for transplantation treatments, cryopreservation techniques and an efficient transportation of regenerated renal products such as xeno-metanephroi and renal progenitor cells should be established. Therefore, we propose a novel method of xenogeneic regenerative medicine for patients with chronic kidney disease by grafting porcine fetal kidneys injected with human renal progenitor cells. To develop a useful cryopreserve system of porcine fetal kidney and human renal progenitor cells, we examined the cryopreservation of a fetal kidney implanted with renal progenitor cells in a mouse model. First, we developed a new method for direct cell injection under the capsule of the metanephros using gelatin as a support for unzipped fetal kidneys. Then, we confirmed in vitro that the nephrons derived from the transplanted cells were regenerated even after cryopreservation before and after cell transplantation. Furthermore, the cryopreserved chimeric metanephroi grew, and regenerated nephrons were observed in NOD. We confirmed that even in cryopreserved chimeric metanephroi, transplanted cell-derived nephrons as well as fresh transplants grew.

12.
Front Physiol ; 13: 974615, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225295

RESUMEN

Kidney transplantation is the only definitive therapy for end-stage kidney disease. The shortage of organs for transplantation is the main limitation of this life-saving treatment. Normothermic machine perfusion (NMP) is a novel preservation technique with the potential to increase the number of transplantable kidneys through reducing delayed graft function and organ evaluation under physiological conditions. To date, the cellular effects and possible pharmacological interventions during machine perfusion are incompletely understood. A major limitation is the technically complex, time-consuming, and small-scale replication of NMP in rodent models. To overcome this, we developed a 3D-printed, high throughput ex-vivo mouse kidney slice incubator (KSI) mimicking mouse kidney NMP by working under closely resembling conditions. KSI significantly reduced the time per experiment and increased the sample throughput (theoretical: 54 incubations with n = 500/day). The model recapitulated the cellular responses during NMP, namely increased endoplasmic reticulum stress (ER stress). Using KSI, five pharmacological interventions against ER stress taken from the literature were tested. While four were ineffective and excluded, one, ß-Nicotinamide-adenine-dinucleotide (NADH), ameliorated ER stress significantly during KSI. The test of NADH in mouse kidney NMP replicated the positive effects against ER stress. This suggests that testing the addition of NADH during clinical kidney NMP might be warranted.

13.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232326

RESUMEN

The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.


Asunto(s)
Riñón , Células Madre , Animales , Proteínas Fluorescentes Verdes/metabolismo , Riñón/metabolismo , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Células Madre/metabolismo
14.
Mater Today Bio ; 16: 100388, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35967737

RESUMEN

Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models.

15.
Front Cell Dev Biol ; 10: 892356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586342

RESUMEN

Kidney diseases are a major health problem worldwide. Despite advances in drug therapies, they are only capable of slowing the progression of kidney diseases. Accordingly, potential kidney regeneration strategies with stem cells have begun to be explored. There are two different directions for regenerative strategies, de novo whole kidney fabrication with stem cells, and stem cell therapy. De novo whole kidney strategies include: 1) decellularized scaffold technology, 2) 3D bioprinting based on engineering technology, 3) kidney organoid fabrication, 4) blastocyst complementation with chimeric technology, and 5) the organogenic niche method. Meanwhile, stem cell therapy strategies include 1) injection of stem cells, including mesenchymal stem cells, nephron progenitor cells, adult kidney stem cells and multi-lineage differentiating stress enduring cells, and 2) injection of protective factors secreted from these stem cells, including growth factors, chemokines, and extracellular vesicles containing microRNAs, mRNAs and proteins. Over the past few decades, there have been remarkable step-by-step developments in these strategies. Here, we review the current advances in the potential strategies for kidney regeneration using stem cells, along with their challenges for possible clinical use in the future.

16.
J Biomater Appl ; 37(3): 415-428, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35603409

RESUMEN

Objective: The purpose of this study was to improve the performance of decellularized renal scaffolds by the genipin crosslinking method to facilitate the regeneration of tissues and cells and provide better conditions for the regeneration and repair of defective kidneys. Methods: SD rats were randomly divided into three groups: normal group, uncrosslinked scaffold group and genipin-crosslinked scaffold group. Hematoxylin eosin, Masson and immunofluorescence staining was used to observe the histomorphological characteristics of the kidneys in each group. The preservation of the renal vascular structure in the three groups was observed by vascular casting. A collagenase degradation assay was used to detect the antidegradation ability of the kidney in the three groups. CCK8 assays were used to test the in vitro biocompatibility of the scaffolds. The lower 1/3 of the rat left kidney was excised, and the defect was filled with decellularized renal scaffolds to observe the effect of scaffold implantation on the regenerative ability of the defective kidney. Results: Histological images showed that the genipin-crosslinked scaffold did not destroy the structure of the scaffold, and the collagen fibers in the scaffold was more regular, and the outline of the glomerulus was clearer than uncrosslinked scaffold. The results of casting showed that the vascular structure of genipin-crosslinked scaffold was still intact. The anti-degradation ability test showed that the anti-degradation ability of genipin-crosslinked scaffold was significantly higher than that of the uncrosslinked scaffold. Cell culture experiments showed that the genipin-crosslinked scaffold had no cytotoxicity and promoted cell proliferation to some extent. In vivo scaffold transplantation experiments further demonstrated that the genipin-crosslinked scaffold had better anti-degradation and anti-inflammatory ability. Conclusion: Genipin-crosslinked rat kidney scaffold complemented kidney defects in rats can enhance scaffold-induced kidney regeneration and repair.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Animales , Iridoides/química , Riñón , Ratas , Ratas Sprague-Dawley , Regeneración , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
17.
J Artif Organs ; 25(3): 191-194, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35102521

RESUMEN

Tissue engineering is a highly interdisciplinary research field aiming at repairing, replacing, and regenerating the defective tissues. Over several decades of research, a variety of methods have been developed. The technical methods can be categorized into scaffold-based and scaffold-free strategies. In this mini review, the discussion will be focused on the technical methods of tissue engineering for kidney regeneration and construction.


Asunto(s)
Regeneración , Ingeniería de Tejidos , Riñón , Tecnología , Andamios del Tejido
18.
World J Stem Cells ; 13(7): 914-933, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34367484

RESUMEN

Kidney diseases are a prevalent health problem around the world. Multidrug therapy used in the current routine treatment for kidney diseases can only delay disease progression. None of these drugs or treatments can reverse the progression to an end-stage of the disease. Therefore, it is crucial to explore novel therapeutics to improve patients' quality of life and possibly cure, reverse, or alleviate the kidney disease. Stem cells have promising potentials as a form of regenerative medicine for kidney diseases due to their unlimited replication and their ability to differentiate into kidney cells in vitro. Mounting evidences from the administration of stem cells in an experimental kidney disease model suggested that stem cell-based therapy has therapeutic or renoprotective effects to attenuate kidney damage while improving the function and structure of both glomerular and tubular compartments. This review summarises the current stem cell-based therapeutic approaches to treat kidney diseases, including the various cell sources, animal models or in vitro studies. The challenges of progressing from proof-of-principle in the laboratory to widespread clinical application and the human clinical trial outcomes reported to date are also highlighted. The success of cell-based therapy could widen the scope of regenerative medicine in the future.

19.
Cells ; 10(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066487

RESUMEN

The worldwide rise in prevalence of chronic kidney disease (CKD) demands innovative bio-medical solutions for millions of kidney patients. Kidney regenerative medicine aims to replenish tissue which is lost due to a common pathological pathway of fibrosis/inflammation and rejuvenate remaining tissue to maintain sufficient kidney function. To this end, cellular therapy strategies devised so far utilize kidney tissue-forming cells (KTFCs) from various cell sources, fetal, adult, and pluripotent stem-cells (PSCs). However, to increase engraftment and potency of the transplanted cells in a harsh hypoxic diseased environment, it is of importance to co-transplant KTFCs with vessel forming cells (VFCs). VFCs, consisting of endothelial cells (ECs) and mesenchymal stem-cells (MSCs), synergize to generate stable blood vessels, facilitating the vascularization of self-organizing KTFCs into renovascular units. In this paper, we review the different sources of KTFCs and VFCs which can be mixed, and report recent advances made in the field of kidney regeneration with emphasis on generation of vascularized kidney tissue by cell transplantation.


Asunto(s)
Células Endoteliales/trasplante , Células Madre Embrionarias Humanas/trasplante , Trasplante de Células Madre Mesenquimatosas , Medicina Regenerativa/métodos , Insuficiencia Renal Crónica/terapia , Manejo de Especímenes/métodos , Animales , Humanos , Ratones , Células Madre Embrionarias de Ratones/trasplante
20.
Materials (Basel) ; 14(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072461

RESUMEN

The implementation of nanomedicine not only provides enhanced drug solubility and reduced off-target adverse effects, but also offers novel theranostic approaches in clinical practice. The increasing number of studies on the application of nanomaterials in kidney therapies has provided hope in a more efficient strategy for the treatment of renal diseases. The combination of biotechnology, material science and nanotechnology has rapidly gained momentum in the realm of therapeutic medicine. The establishment of the bedrock of this emerging field has been initiated and an exponential progress is observed which might significantly improve the quality of human life. In this context, several approaches based on nanomaterials have been applied in the treatment and regeneration of renal tissue. The presented review article in detail describes novel strategies for renal failure treatment with the use of various nanomaterials (including carbon nanotubes, nanofibrous membranes), mesenchymal stem cells-derived nanovesicles, and nanomaterial-based adsorbents and membranes that are used in wearable blood purification systems and synthetic kidneys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA