Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(32): 9916-9922, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087720

RESUMEN

The performance of metal and polymer foams used in inertial confinement fusion (ICF), inertial fusion energy (IFE), and high-energy-density (HED) experiments is currently limited by our understanding of their nanostructure and its variation in bulk material. We utilized an X-ray-free electron laser (XFEL) together with lensless X-ray imaging techniques to probe the 3D morphology of copper foams at nanoscale resolution (28 nm). The observed morphology of the thin shells is more varied than expected from previous characterizations, with a large number of them distorted, merged, or open, and a targeted mass density 14% less than calculated. This nanoscale information can be used to directly inform and improve foam modeling and fabrication methods to create a tailored material response for HED experiments.

2.
Fundam Res ; 3(4): 602-610, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38933543

RESUMEN

Uniform poly-α-methylstyrene (PAMS) hollow core microcapsules (HCMs) are widely used as templates to fabricate glow discharge polymer (GDP) fuel capsules, which are fundamental devices for inertial confinement fusion (ICF) engineering. The sphericity and surface finish uniformity of PAMS HCMs are critical for achieving high-quality GDP fuel capsules. In this work, millimeter-scale PAMS HCMs were fabricated by a microencapsulation technique. The sphericity and surface finish uniformity were concurrently improved using di-t-butyl peroxide (DTBP). The mechanisms of these effects were also experimentally and theoretically investigated. The results show that DTBP distributes at the O-W2 interface of W1/O/W2 compound droplets, which resists the diffusion of molecules through the O-W2 interface bidirectionally. The resisted diffusion of H2O molecules into the O phase eliminates PAMS HCM surface defects. Additionally, the resistance of fluorobenzene (FB) molecules from diffusing from the O phase into the W2 phase can effectively extend the solidification of W1/O/W2 compound droplets and thus improve the spherical uniformity of the HCMs. Using these improved PAMS HCMs, GDP fuel capsules meeting the stringent requirements for ICF engineering are prepared, and the quality of which is beyond the National Ignition Facility standard.

3.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200021, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280557

RESUMEN

Since the seminal paper of Nuckolls triggering the quest of inertial confinement fusion (ICF) with lasers, hydrodynamic instabilities have been recognized as one of the principal hurdles towards ignition. This remains true nowadays for both main approaches (indirect drive and direct drive), despite the advent of MJ scale lasers with tremendous technological capabilities. From a fundamental science perspective, these gigantic laser facilities enable also the possibility to create dense plasma flows evolving towards turbulence, being magnetized or not. We review the state of the art of nonlinear hydrodynamics and turbulent experiments, simulations and theory in ICF and high-energy-density plasmas and draw perspectives towards in-depth understanding and control of these fascinating phenomena. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200022, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280560

RESUMEN

When high-energy and high-power lasers interact with matter, a significant part of the incoming laser energy is transformed into transient electromagnetic pulses (EMPs) in the range of radiofrequencies and microwaves. These fields can reach high intensities and can potentially represent a significative danger for the electronic devices placed near the interaction point. Thus, the comprehension of the origin of these electromagnetic fields and of their distribution is of primary importance for the safe operation of high-power and high-energy laser facilities, but also for the possible use of these high fields in several promising applications. A recognized main source of EMPs is the target positive charging caused by the fast-electron emission due to laser-plasma interactions. The fast charging induces high neutralization currents from the conductive walls of the vacuum chamber through the target holder. However, other mechanisms related to the laser-target interaction are also capable of generating intense electromagnetic fields. Several possible sources of EMPs are discussed here and compared for high-energy and high-intensity laser-matter interactions, typical for inertial confinement fusion and laser-plasma acceleration. The possible effects on the electromagnetic field distribution within the experimental chamber, due to particle beams and plasma emitted from the target, are also described. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

5.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280561

RESUMEN

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

6.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200039, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280562

RESUMEN

Two-dimensional particle-in-cell simulations are used to explore collisionless shock acceleration in the corona plasma surrounding the compressed core of an inertial confinement fusion pellet. We show that an intense laser pulse interacting with the long scale-length plasma corona is able to launch a collisionless shock around the critical density. The nonlinear wave travels up-ramp through the plasma reflecting and accelerating the background ions. Our results suggest that protons with characteristics suitable for ion fast ignition may be achieved in this way. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

7.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200028, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280563

RESUMEN

Part II of this special edition contains the remaining 11 papers arising from a Hooke discussion meeting held in March 2020 devoted to exploring the current status of inertial confinement fusion research worldwide and its application to electrical power generation in the future, via the development of an international inertial fusion energy programme. It builds upon increased coordination within Europe over the past decade by researchers supported by the EUROFusion Enabling Research grants, as well as collaborations that have arisen naturally with some of America's and Asia's leading researchers, both in the universities and national laboratories. The articles are devoted to informing an update to the European roadmap for an inertial fusion energy demonstration reactor, building upon the commonalities between the magnetic and inertial fusion communities' approaches to fusion energy. A number of studies devoted to understanding the physics barriers to ignition on current facilities are then presented. The special issue concludes with four state-of-the-art articles describing recent significant advances in fast ignition inertial fusion research. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

8.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200017, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280564

RESUMEN

Magnetic fields can be generated in plasmas by the Biermann battery when the electric field produced by the electron pressure gradient has a curl. The commonly employed magnetohydrodynamic (MHD) model of the Biermann battery breaks down when the electron distribution function is distorted away from Maxwellian. Using both MHD and kinetic simulations of a laser-plasma interaction relevant to inertial confinement fusion we have shown that this distortion can reduce the Biermann-producing electric field by around 50%. More importantly, the use of a flux limiter in an MHD treatment to deal with the effect of the non-Maxwellian electron distribution on electron thermal transport leads to a completely unphysical prediction of the Biermann-producing electric field and so results in erroneous predictions for the generated magnetic field. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

9.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200005, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280565

RESUMEN

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. A brief overview of these activities, presented here, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

10.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200159, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280566

RESUMEN

Fast ignition inertial confinement fusion requires the production of a low-density channel in plasma with density scale-lengths of several hundred microns. The channel assists in the propagation of an ultra-intense laser pulse used to generate fast electrons which form a hot spot on the side of pre-compressed fusion fuel. We present a systematic characterization of an expanding laser-produced plasma using optical interferometry, benchmarked against three-dimensional hydrodynamic simulations. Magnetic fields associated with channel formation are probed using proton radiography, and compared to magnetic field structures generated in full-scale particle-in-cell simulations. We present observations of long-lived, straight channels produced by the Habara-Kodama-Tanaka whole-beam self-focusing mechanism, overcoming a critical barrier on the path to realizing fast ignition. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

11.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200224, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280567

RESUMEN

Indirect drive inertial confinement fusion experiments with convergence ratios below 17 have been previously shown to be less susceptible to Rayleigh-Taylor hydrodynamic instabilities, making this regime highly interesting for fusion science. Additional limitations imposed on the implosion velocity, in-flight aspect ratio and applied laser power aim to further reduce instability growth, resulting in a new regime where performance can be well represented by one-dimensional (1D) hydrodynamic simulations. A simulation campaign was performed using the 1D radiation-hydrodynamics code HYADES to investigate the performance that could be achieved using direct-drive implosions of liquid layer capsules, over a range of relevant energies. Results include potential gains of 0.19 on LMJ-scale systems and 0.75 on NIF-scale systems, and a reactor-level gain of 54 for an 8.5 MJ implosion. While the use of 1D simulations limits the accuracy of these results, they indicate a sufficiently high level of performance to warrant further investigations and verification of this new low-instability regime. This potentially suggests an attractive new approach to fusion energy. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

12.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200030, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040652

RESUMEN

This work presents studies which demonstrate the importance of the very early heating dynamics of the ablator long before the ablation plasma phase begins in laser driven inertial confinement fusion (ICF) studies. For the direct-drive fusion concept using lasers, the development of perturbations during the thermo-elasto-plastic (TEP) and melting phases of the interaction of the laser pulse with the ablator's surface may act as seeding to the subsequent growth of hydro-dynamic instabilities apparent during the acceleration phase of the interaction such as for instance the Rayleigh-Taylor and the Richtmyer-Meshkov, which strongly affect the implosion dynamics of the compression phase. The multiphysics-multiphase finite-element method (FEM) simulation results are experimentally validated by advanced three-dimensional whole-field dynamic imaging of the surface of the ablator allowing for a transverse to the surface spatial resolution of only approximately 1 nm. The study shows that the TEP and melting phases of the interaction are of crucial importance since transverse perturbations of the ablator's surface can reach tens of nanometres in amplitude within the TEP and melting phases. Such perturbations are of Rayleigh type and are transferred from the ablator to the substrate from the very first moments of the interaction. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

13.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200013, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040654

RESUMEN

In this paper, I consider the motivations, recent results and perspectives for the inertial confinement fusion (ICF) studies in Europe. The European approach is based on the direct drive scheme with a preference for the central ignition boosted by a strong shock. Compared to other schemes, shock ignition offers a higher gain needed for the design of a future commercial reactor and relatively simple and technological targets, but implies a more complicated physics of laser-target interaction, energy transport and ignition. European scientists are studying physics issues of shock ignition schemes related to the target design, laser plasma interaction and implosion by the code developments and conducting experiments in collaboration with US and Japanese physicists, providing access to their installations Omega and Gekko XII. The ICF research in Europe can be further developed only if European scientists acquire their own academic laser research facility specifically dedicated to controlled fusion energy and going beyond ignition to the physical, technical, technological and operational problems related to the future fusion power plant. Recent results show significant progress in our understanding and simulation capabilities of the laser plasma interaction and implosion physics and in our understanding of material behaviour under strong mechanical, thermal and radiation loads. In addition, growing awareness of environmental issues has attracted more public attention to this problem and commissioning at ELI Beamlines the first high-energy laser facility with a high repetition rate opens the opportunity for qualitatively innovative experiments. These achievements are building elements for a new international project for inertial fusion energy in Europe. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

14.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200045, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040655

RESUMEN

Experimental asymmetries in fusion implosions can lead to magnetic field generation in the hot plasma core. For typical parameters, previous studies found that the magnetization Hall parameter, given by the product of the electron gyro-frequency and Coulomb collision time, can exceed one. This will affect the hydrodynamics through inhibition and deflection of the electron heat flux. The magnetic field source is the collisionless Biermann term, which arises from the Debye shielding potential in electron pressure gradients. We show that there is an additional source term due to the Z dependence of the Coulomb collision operator. If there are ion composition gradients, such as jets of carbon ablator mix entering the hot-spot, this source term can rapidly exceed the Biermann fields. In addition, the Biermann fields are enhanced due to the increased temperature gradients from carbon radiative cooling. With even stronger self-generated fields, heat loss to the carbon regions will be reduced, potentially reducing the negative effect of carbon mix. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

15.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200012, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040656

RESUMEN

Almost 30 years since the last UK nuclear test, it remains necessary regularly to underwrite the safety and effectiveness of the National Nuclear Deterrent. To do so has been possible to date because of the development of continually improving science and engineering tools running on ever more powerful high-performance computing platforms, underpinned by cutting-edge experimental facilities. While some of these facilities, such as the Orion laser, are based in the UK, others are accessed by international collaboration. This is most notably with the USA via capabilities such as the National Ignition Facility, but also with France where a joint hydrodynamics facility is nearing completion following establishment of a Treaty in 2010. Despite the remarkable capability of the science and engineering tools, there is an increasing requirement for experiments as materials age and systems inevitably evolve further from what was specifically trialled at underground nuclear tests (UGTs). The data from UGTs will remain the best possible representation of the extreme conditions generated in a nuclear explosion, but it is essential to supplement these data by realizing new capabilities that will bring us closer to achieving laboratory simulations of these conditions. For high-energy-density physics, the most promising technique for generating temperatures and densities of interest is inertial confinement fusion (ICF). Continued research in ICF by the UK will support the certification of the deterrent for decades to come; hence the UK works closely with the international community to develop ICF science. UK Ministry of Defence © Crown Owned Copyright 2020/AWE. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

16.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200006, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040658

RESUMEN

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition etc.; and (c) developing technologies that will be required in the future for a fusion reactor. The Hooke discussion meeting in March 2020 provided an opportunity to reflect on the progress made in inertial confinement fusion research world-wide to date. This first edition of two special issues seeks to identify paths forward to achieve high fusion energy gain. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

17.
Philos Trans A Math Phys Eng Sci ; 378(2184): 20200015, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33040660

RESUMEN

While major progress has been made in the research of inertial confinement fusion, significant challenges remain in the pursuit of ignition. To tackle the challenges, we propose a double-cone ignition (DCI) scheme, in which two head-on gold cones are used to confine deuterium-tritium (DT) shells imploded by high-power laser pulses. The scheme is composed of four progressive controllable processes: quasi-isentropic compression, acceleration, head-on collision and fast heating of the compressed fuel. The quasi-isentropic compression is performed inside two head-on cones. At the later stage of the compression, the DT shells in the cones are accelerated to forward velocities of hundreds of km s-1. The head-on collision of the compressed and accelerated fuels from the cone tips transfer the forward kinetic energy to the thermal energy of the colliding fuel with an increased density. The preheated high-density fuel can keep its status for a period of approximately 200 ps. Within this period, MeV electrons generated by ps heating laser pulses, guided by a ns laser-produced strong magnetic field further heat the fuel efficiently. Our simulations show that the implosion inside the head-on cones can greatly mitigate the energy requirement for compression; the collision can preheat the compressed fuel of approximately 300 g cm-3 to a temperature above keV. The fuel can then reach an ignition temperature of greater than 5 keV with magnetically assisted heating of MeV electrons generated by the heating laser pulses. Experimental campaigns to demonstrate the scheme have already begun. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 1)'.

18.
Proc Natl Acad Sci U S A ; 117(18): 9741-9746, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312816

RESUMEN

Neural networks have become the method of choice in surrogate modeling because of their ability to characterize arbitrary, high-dimensional functions in a data-driven fashion. This paper advocates for the training of surrogates that are 1) consistent with the physical manifold, resulting in physically meaningful predictions, and 2) cyclically consistent with a jointly trained inverse model; i.e., backmapping predictions through the inverse results in the original input parameters. We find that these two consistencies lead to surrogates that are superior in terms of predictive performance, are more resilient to sampling artifacts, and tend to be more data efficient. Using inertial confinement fusion (ICF) as a test-bed problem, we model a one-dimensional semianalytic numerical simulator and demonstrate the effectiveness of our approach.

19.
ACS Appl Mater Interfaces ; 8(4): 2600-6, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26717408

RESUMEN

Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA