Your browser doesn't support javascript.
loading
Improved surrogates in inertial confinement fusion with manifold and cycle consistencies.
Anirudh, Rushil; Thiagarajan, Jayaraman J; Bremer, Peer-Timo; Spears, Brian K.
Afiliación
  • Anirudh R; Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA 94550; anirudh1@llnl.gov.
  • Thiagarajan JJ; Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA 94550.
  • Bremer PT; Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA 94550.
  • Spears BK; Center for Extreme Data Management Analysis and Visualization (CEDMAV), University of Utah, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A ; 117(18): 9741-9746, 2020 05 05.
Article en En | MEDLINE | ID: mdl-32312816
Neural networks have become the method of choice in surrogate modeling because of their ability to characterize arbitrary, high-dimensional functions in a data-driven fashion. This paper advocates for the training of surrogates that are 1) consistent with the physical manifold, resulting in physically meaningful predictions, and 2) cyclically consistent with a jointly trained inverse model; i.e., backmapping predictions through the inverse results in the original input parameters. We find that these two consistencies lead to surrogates that are superior in terms of predictive performance, are more resilient to sampling artifacts, and tend to be more data efficient. Using inertial confinement fusion (ICF) as a test-bed problem, we model a one-dimensional semianalytic numerical simulator and demonstrate the effectiveness of our approach.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos