Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891024

RESUMEN

BACH2 (BTB Domain and CNC Homolog 2) is a transcription factor that serves as a central regulator of immune cell differentiation and function, particularly in T and B lymphocytes. A picture is emerging that BACH2 may function as a master regulator of cell fate that is exquisitely sensitive to cell activation status. In particular, BACH2 plays a key role in stabilizing the phenotype and suppressive function of transforming growth factor-beta (TGF-ß)-derived human forkhead box protein P3 (FOXP3)+ inducible regulatory T cells (iTregs), a cell type that holds great clinical potential as a cell therapeutic for diverse inflammatory conditions. As such, BACH2 potentially could be targeted to overcome the instability of the iTreg phenotype and suppressive function that has hampered their clinical application. In this review, we focus on the role of BACH2 in T cell fate and iTreg function and stability. We suggest approaches to modulate BACH2 function that may lead to more stable and efficacious Treg cell therapies.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Animales , Factores de Transcripción Forkhead/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Diferenciación Celular
2.
Cytokine ; 158: 156009, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049243

RESUMEN

Type I interferons (IFNs) are pleiotropic cytokines and impact various immune cells, including regulatory T cells (Treg cells). The effect of type-I IFNs on the development and function of Treg cells is quite controversial. Here we induced Treg cells (iTreg cells) from naïve CD4+ T cells in vitro in the presence or absence of IFN-ß to elucidate its direct effect on the induction of iTreg cells. We found that IFN-ß suppressed the proliferation of iTreg cells but enhanced their expression of anti-apoptotic genes Bcl-2 and Mcl-1 during the development of iTreg cells. We also found that IFN-ß promoted suppression of conventional T cell proliferation by iTreg cells. These results suggest that IFN-ß promotes the survival and immunomodulatory function of iTreg cells.


Asunto(s)
Interferón beta , Linfocitos T Reguladores , Proliferación Celular , Citocinas , Factores de Transcripción Forkhead/genética , Interferón beta/farmacología
3.
J Int Med Res ; 48(12): 300060520976477, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33356722

RESUMEN

Considerable attention has been paid to interleukin (IL)-35 because of its immunosuppressive effects in a variety of autoimmune diseases. IL-35, a recently identified cytokine of the IL-12 family, is a negative regulatory factor secreted by IL-35-inducible regulatory T cells (iTr35 cells) and the recently reported regulatory B cells (Breg cells). Four biological effects of IL-35 have been discovered in vitro and in vivo: (i) suppression of T cell proliferation; (ii) conversion of naive T cells into iTr35 cells; (iii) downregulation of type 17 helper T (Th17) cells; and (iv) conversion of Breg cells into a Breg subset that produces IL-35 and IL-10. IL-35 plays an important role in a variety of autoimmune diseases, such as rheumatoid arthritis, allergic asthma and systemic lupus erythematosus. Primary immune thrombocytopaenia (ITP), which is characterized by isolated thrombocytopaenia and mild mucocutaneous to life-threatening bleeding, is an autoimmune disease with complex dysregulation of the immune system. Both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells and cytokine imbalances have now been recognized to be important. This review summarizes the immunomodulatory effects of IL-35 and its role in the pathogenesis of ITP as mediated by T and B cells.


Asunto(s)
Linfocitos B Reguladores , Púrpura Trombocitopénica Idiopática , Autoinmunidad , Citocinas , Humanos , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Linfocitos T Reguladores
4.
J Allergy Clin Immunol ; 143(3): 1131-1142.e4, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30053528

RESUMEN

BACKGROUND: Grass pollen-specific immunotherapy involves immunomodulation of allergen-specific TH2 responses and induction of IL-10+ and/or TGF-ß+CD4+CD25+ regulatory T cells (induced Treg cells). IL-35+CD4+CD25+ forkhead box protein 3-negative T (IL-35-inducible regulatory T [iTR35]) cells have been reported as a novel subset of induced Treg cells with modulatory characteristics. OBJECTIVE: We sought to investigate mechanisms underlying the induction and maintenance of immunologic tolerance induced by IL-35 and iTR35 cells. METHODS: The biological effects of IL-35 were assessed on group 2 innate lymphoid cells (ILC2s); dendritic cells primed with thymic stromal lymphopoietin, IL-25, and IL-33; and B and TH2 cells by using flow cytometry and quantitative RT-PCR. Grass pollen-driven TH2 cell proliferation and cytokine production were measured by using tritiated thymidine and Luminex MagPix, respectively. iTR35 cells were quantified in patients with grass pollen allergy (seasonal allergic rhinitis [SAR] group, n = 16), sublingual immunotherapy (SLIT)-treated patients (SLIT group, n = 16), and nonatopic control subjects (NACs; NAC group, n = 16). RESULTS: The SAR group had increased proportions of ILC2s (P = .002) and IL-5+ cells (P = .042), IL-13+ cells (P = .042), and IL-5+IL-13+ ILC2s (P = .003) compared with NACs. IL-35 inhibited IL-5 and IL-13 production by ILC2s in the presence of IL-25 or IL-33 (P = .031) and allergen-driven TH2 cytokines by effector T cells. IL-35 inhibited CD40 ligand-, IL-4-, and IL-21-mediated IgE production by B cells (P = .015), allergen-driven T-cell proliferation (P = .001), and TH2 cytokine production mediated by primed dendritic cells. iTR35 cells suppressed TH2 cell proliferation and cytokine production. In addition, allergen-driven IL-35 levels and iTR35 cell counts were increased in patients receiving SLIT (all, P < .001) and NACs (all, P < .001) compared with patients with SAR. CONCLUSION: IL-35 and iTR35 cells are potential novel immune regulators induced by SLIT. The clinical relevance of SLIT can be underscored by restoration of protective iTR35 cells.


Asunto(s)
Alérgenos/inmunología , Interleucinas/inmunología , Linfocitos/inmunología , Poaceae/inmunología , Polen/inmunología , Rinitis Alérgica Estacional/terapia , Inmunoterapia Sublingual , Adulto , Femenino , Humanos , Tolerancia Inmunológica , Masculino , Persona de Mediana Edad , Rinitis Alérgica Estacional/inmunología , Adulto Joven
5.
Front Immunol ; 4: 212, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23898333

RESUMEN

Regulatory T cells (Treg) play a key role in maintaining the balance of immune responses in human health and in disease. Treg come in many flavors and can utilize a variety of mechanisms to modulate immune responses. In cancer, inducible (i) or adaptive Treg expand, accumulate in tissues and peripheral blood of patients, and represent a functionally prominent component of CD4+ T lymphocytes. Phenotypically and functionally, iTreg are distinct from natural (n) Treg. A subset of iTreg expressing ectonucleotidases CD39 and CD73 is able to hydrolyze ATP to 5'-AMP and adenosine (ADO) and thus mediate suppression of those immune cells which express ADO receptors. iTreg can also produce prostaglandin E2 (PGE2). The mechanisms responsible for iTreg-mediated suppression involve binding of ADO and PGE2 produced by iTreg to their respective receptors expressed on T effector cells (Teff), leading to the up-regulation of adenylate cyclase and cAMP activities in Teff and to their functional inhibition. The potential for regulating these mechanisms by the use of pharmacologic inhibitors to relieve iTreg-mediated suppression in cancer suggests the development of therapeutic strategies targeting the ADO and PGE2 pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA