Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Prot ; 86(3): 100064, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36916549

RESUMEN

A novel, natural, and effective antimicrobial intervention is in demand for improving the microbial safety of vegetable seeds/sprouts. This study assessed the efficacy of ascaroside treatment in the control of Salmonella enterica on alfalfa and fenugreek sprouts. Sanitized commercial seeds were treated with 1 mM or 1 µM ascaroside (ascr)#18, a plant immunity modulator (PIM) and dried for an hour before being inoculated with lyophilized S. Cubana or S. Stanley cells in sandy soil (104 CFU/g). Treated and untreated seeds were spouted on 1% water agar at 25°C in the dark. Seed or sprout samples were collected on days 0, 1, 3, 5, and 7, and the population of Salmonella was determined. Data were fit into the general linear arrangement, and means were separated using Fisher's least significant difference test. Seed type, strain type, treatment type, and sprouting time were significant factors (P ≤ 0.05) influencing Salmonella growth on sprouts. The populations of Salmonella were significantly higher on fenugreek than on alfalfa sprouts. S. Stanley had a significantly higher population than S. Cubana. The population of Salmonella increased from day 0 to day 3 and reached the peak population on Day 5. Treatments with both concentrations of ascaroside significantly decreased the populations of Salmonella compared to the controls. The mean Salmonella population reduction was ca. 4 or 1 log CFU/g by treatment with 1 mM and 1 µM of the PIM, respectively. Treatment with the PIM could be potentially used to improve the microbial safety of vegetable seeds and sprouts.


Asunto(s)
Salmonella enterica , Trigonella , Medicago sativa , Germinación , Salmonella , Verduras , Semillas , Recuento de Colonia Microbiana , Microbiología de Alimentos
2.
Nat Prod Res ; 37(23): 4053-4057, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36622893

RESUMEN

Tinospora cordifolia and Actinidia deliciosa are the widely used plant in Ayurvedic systems of medicine. Both plants are well known for their immunomodulatory activity. In the current study, in silico exploration was performed using advanced computational techniques such as molecular docking and molecular dynamics simulation approach. Bioactive molecules from the Tinospora cordifolia and Actinidia deliciosa were docked against the Human IL-2. Out of all the docked bioactive molecules, Pygenic acid-B (PubChem CID:146157192) showed the highest negative binding affinity.


Asunto(s)
Actinidia , Tinospora , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Tinospora/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA