Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125023, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39213832

RESUMEN

Novel geometrically asymmetric biscinnamyl-sulfone compounds (6a-c) with donor-π-conjugated spacer-acceptor functionality were successfully synthesized. This was achieved by coupling cinnamaldehyde precursors with 3,3'-diaminodiphenyl sulfone in dry organic solvents, resulting in high yields. Several spectroscopic techniques were employed to identify the derivatives. The absorption spectra of these compounds exhibited broad bands that spanned up to 120 nm, which can be attributed to their extended conjugation systems. In order to explore the electronic transitions of these materials, Time-Dependent Density-Functional Theory (TD-DFT) with EIFPCM solvation mode was utilized. We computationally investigated the static nonlinear optical (NLO) parameters, including dipole moments (µ), polarizability (α), anisotropic polarizability (Δα), first-order hyperpolarization (ß), and second-order hyperpolarization (γ). Although the new structures possess different functional groups, they displayed similar electronic potentials when their molecular electrostatic potentials were plotted. These potentials are crucial in stabilizing the molecules in crystal systems through noncovalent forces such as C-H⋯π stacking and hydrogen bonding. They also provide insights into the electronic assessments and energetics of these individual forces. By estimating the frontier orbitals, we gained an understanding of the intramolecular charge transfer in the compounds. Energy gap values were determined using the orbitals of density of states method and experimentally via the Tauc method. The computational and experimental results were in good agreement. Lastly, we examined the influence of different protic and aprotic solvents on the absorption bands of compound 6b, as an example. This compound showed a significant bathochromic shift of 41 nm upon changing the solvent from acetic acid to dimethyl sulfoxide.

2.
mBio ; : e0237024, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248573

RESUMEN

Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.

3.
Angew Chem Int Ed Engl ; : e202409510, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264818

RESUMEN

The low sensitivity of liquid-state nuclear magnetic resonance (NMR) can be overcome by hyperpolarizing nuclear spins by dissolution dynamic nuclear polarization (dDNP). It consists of transferring the near-unity polarization of unpaired electron spins of stable radicals to the nuclear spins of interest at liquid helium temperatures, below 2 K, before melting the sample in view of hyperpolarized liquid-state magnetic resonance experiments. Reaching such a temperature is challenging and requires complex instrumentation, which impedes the deployment of dDNP. Here, we propose organic conductive polymers such as polyaniline (PANI) as a new class of polarizing matrices and report 1H polarizations of up to 5%. We also show that 13C spins of a host solution impregnated in porous conductive polymers can be hyperpolarized by relayed DNP. Such conductive polymers can be synthesized as chiral and display current induced spin selectivity leading to electron spins hyperpolarization close to unity without the need for low temperatures nor high magnetic fields. Our results show the feasibility of solid-state DNP in conductive polymers that are known to exhibit chirality-induced spin selectivity.

4.
Heliyon ; 10(14): e33994, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108891

RESUMEN

Although the store-operated Ca2+ entry (SOCE) plays a critical role in maintaining Ca2+ homeostasis in vascular endothelial cells (VECs), its role in regulating endothelium-dependent hyperpolarization (EDH)-mediated vasorelaxation is largely unknown. Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are the most common gastrointestinal disorders with no effective cures. The present study applied N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine (TPEN) as a Ca2+ chelator in the endoplasmic reticulum (ER) to study the SOCE/EDH-mediated vasorelaxation of micro-arteries and their involvements in the pathogenesis of IBD and IBS. Human submucosal arterioles and the second-order branch of 6-8 weeks male C57BL/6 mouse mesenteric arterioles were used, and TPEN-induced vasorelaxation was recorded by Danish DMT520A microvascular measuring system. The mice were fed water with 2.5 % dextran sulfate sodium for 7 days to induce mouse model of ulcerative colitis, and water avoidance stress was used to induce mouse model of IBS. The statistical significance of differences in the means of experimental groups was determined using a t-test for two groups or one-way ANOVA for more than two groups. TPEN concentration-dependently induced vasorelaxation of human colonic submucosal arterioles and the second-order branch of murine mesenteric arteries in endothelium-dependent manner. TPEN-induced vasorelaxation was much greater in the arteries pre-constricted by noradrenaline than those by high K+. While TPEN-induced vasorelaxation was unaffected by inhibitors of NO and PGI2, it was significantly inhibited by the selective inhibitors of IKCa and SKCa channels but was potentiated by their activator. Moreover, TPEN-induced vasorelaxation was attenuated by selective inhibitors of NCX, NKA, SOCE, STIM translocation and Orai transportation. Finally, TPEN-induced vasorelaxation via SOCE/EDH was impaired in colitic mice but remained intact in IBS mice. Interestingly, TPEN could rescue vagus neurotransmitter ACh-induced vasorelaxation that was impaired in IBS mice. Therefore, since TPEN-induced SOCE/EDH-mediated vasorelaxation of mesenteric arteries is well-preserved to be able to rescue ACh-induced vasorelaxation impaired in IBS, TPEN has therapeutic potentials for IBS.

5.
Magn Reson Med ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119764

RESUMEN

PURPOSE: The objective of the present work was to test the feasibility of in vivo imaging of hyperpolarized 50-nm silicon-29 (29Si) nanoparticles. METHODS: Commercially available, crystalline 50-nm nanoparticles were hyperpolarized using dynamic polarization transfer via the endogenous silicon oxide-silicon defects without the addition of exogenous radicals. Phantom experiments were used to quantify the effect of sample dissolution and various surface coating on T1 and T2 relaxation. The in vivo feasibility of detecting hyperpolarized silicon-29 was tested following intraperitoneal, intragastric, or intratumoral injection in mice and compared with the results obtained with previously reported, large, micrometer-size particles. The tissue clearance of SiNPs was quantified in various organs using inductively coupled plasma optical emission spectroscopy. RESULTS: In vivo images obtained after intragastric, intraperitoneal, and intratumoral injection compare favorably between small and large SiNPs. Improved distribution of small SiNPs was observed after intraperitoneal and intragastric injection as compared with micrometer-size SiNPs. Sufficient clearance of nanometer-size SiNPs using ex vivo tissue sample analysis was observed after 14 days following injection, indicating their safe use. CONCLUSION: In vivo MRI of hyperpolarized small 50-nm SiNPs is feasible with polarization levels and room-temperature relaxation times comparable to large micrometer-size particles.

6.
Genetics ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110015

RESUMEN

To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.

7.
Biophys Chem ; 313: 107303, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126968

RESUMEN

Dynamic Nuclear Polarization (DNP) is a technique that leverages the quantum sensing capability of electron spins to enhance the sensitivity of nuclear magnetic resonance (NMR) signals, especially for insensitive samples. Glassing agents play a crucial role in the DNP process by facilitating the transfer of polarization from the unpaired electron spins to the nuclear spins along with cryoprotection of biomolecules. DNPjuice comprising of glycerol-d8/D2O/H2O has been extensively used for this purpose over the past two decades. Polyethylene glycol (PEG), also used as a cryoprotectant, is often used as a crowding agent in experimental setups to mimic cellular conditions, particularly the invitro preparation of liquid-liquid phase separated (LLPS) condensates. In this study, we investigate the efficacy of PEG as an alternative to glycerol in the DNP juice, critical for signal enhancement. The modified DNP matrix leads to high DNP enhancement which enables direct study of LLPS condensates by solid-state DNP methods without adding any external constituents. An indirect advantage of employing PEG is that the PEG signals appear at ∼72.5 ppm and are relatively well-separated from the aliphatic region of the protein spectra. Large cross-effect DNP enhancement is attained for 13C-glycine by employing the PEG-water mixture as a glassing agent and ASYMPOL-POK as the state-of-art polarizing agent, without any deuteration. The DNP enhancement and the buildup rates are similar to results obtained with DNP juice, conforming to that PEG serves as a good candidate for both inducing crowding and glassing agent in the study of LLPS.


Asunto(s)
Polietilenglicoles , alfa-Sinucleína , Polietilenglicoles/química , alfa-Sinucleína/química , Resonancia Magnética Nuclear Biomolecular , Glicerol/química , Humanos
8.
Magn Reson Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164797

RESUMEN

PURPOSE: To demonstrate the feasibility of 3D echo-planar spectroscopic imaging (EPSI) technique with rapid volumetric radial k-space sampling for hyperpolarized (HP) 13C magnetic resonance spectroscopic imaging (MRSI) in vivo. METHODS: A radial EPSI (rEPSI) was implemented on a 3 T clinical PET/MR system. To enable volumetric coverage, the sinusoidal shaped readout gradients per k-t-spoke were rotated along the three spatial dimensions in a golden-angle like manner. A distance-weighted, density-compensated gridding reconstruction was used, also in cases with undersampling of spokes in k-space. Measurements without and with HP 13C-labeled substances were performed in phantoms and rats using a double-resonant 13C/1H volume resonator with 72 mm inner diameter. RESULTS: Phantom measurements demonstrated the feasibility of the implemented rEPSI sequence, as well as the robustness to undersampling in k-space up to a factor of 5 without advanced reconstruction techniques. Applied to measurements with HP [1-13C]pyruvate in a tumor-bearing rat, we obtained well-resolved MRSI datasets with a large matrix size of 123 voxels covering the whole imaging FOV of (180 mm)3 within 6.3 s, enabling to observe metabolism in dynamic acquisitions. CONCLUSION: After further optimization, the proposed rEPSI method may be useful in applications of HP 13C-tracers where unknown or varying metabolite resonances are expected, and the acquisition of dynamic, volumetric MRSI datasets with an adequate temporal resolution is a challenge.

9.
bioRxiv ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39091840

RESUMEN

S-nitrosylation of Cx43 gap junction channels critically regulates communication between smooth muscle cells and endothelial cells. This posttranslational modification also induces the opening of undocked Cx43 hemichannels. However, its specific impact on vasomotor regulation remains unclear. Considering the role of endothelial TRPV4 channel activation in promoting vasodilation through nitric oxide (NO) production, we investigated the direct modulation of endothelial Cx43 hemichannels by TRPV4 channel activation. Using the proximity ligation assay, we identify that Cx43 and TRPV4 are found in close proximity in the endothelium of resistance arteries. In primary endothelial cell cultures from resistance arteries (ECs), GSK-induced TRPV4 activation enhances eNOS activity, increases NO production, and opens Cx43 hemichannels via direct S-nitrosylation. Notably, the elevated intracellular Ca2+ levels caused by TRPV4 activation were reduced by blocking Cx43 hemichannels. In ex vivo mesenteric arteries, inhibiting Cx43 hemichannels reduced endothelial hyperpolarization without affecting NO production in ECs, underscoring a critical role of TRPV4/Cx43 signaling in endothelial electrical behavior. We perturbed the proximity of Cx43/TRPV4 by disrupting lipid rafts in ECs using ß-cyclodextrin. Under these conditions, hemichannel activity, Ca2+ influx, and endothelial hyperpolarization were blunted upon GSK stimulation. Intravital microscopy of mesenteric arterioles in vivo further demonstrated that inhibiting Cx43 hemichannels activity, NO production and disrupting endothelial integrity reduce TRPV4-induced relaxation. These findings underscore a new pivotal role of Cx43 hemichannel associated with TRPV4 signaling pathway in modulating endothelial electrical behavior and vasomotor tone regulation.

10.
Brain ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088003

RESUMEN

The clinical manifestations of sporadic amyotrophic lateral sclerosis (ALS) vary widely. However, the current classification of ALS is mainly based on clinical presentations, while the roles of electrophysiological and biomedical biomarkers remain limited. Herein, we investigated a group of patients with sporadic ALS and an ALS mouse model with superoxide dismutase 1 (SOD1)/G93A transgenes using nerve excitability tests (NET) to investigate axonal membrane properties and chemical precipitation, followed by enzyme-linked immunosorbent assay analysis to measure plasma misfolded protein levels. Six of 19 patients (31.6%) with sporadic ALS had elevated plasma misfolded SOD1 protein levels. In sporadic ALS patients, only those with elevated misfolded SOD1 protein levels showed an increased inward rectification in the current-threshold (I/V) curve and an increased threshold reduction in the hyperpolarizing threshold electrotonus (TE) in the NET study. Two familial ALS patients with SOD1 mutations also exhibited similar electrophysiological patterns of NET. For patients with sporadic ALS showing significantly increased inward rectification in the I/V curve, we noted an elevation in plasma misfolded SOD1 level, but not in total SOD1, misfolded C9orf72, or misfolded phosphorylated TDP43 levels. Computer simulations demonstrated that the aforementioned axonal excitability changes are likely associated with an increase in hyperpolarization-activated cyclic nucleotide-gated (HCN) current. In SOD1/G93A mice, NET also showed an increased inward rectification in the I/V curve, which could be reversed by a single injection of the HCN channel blocker, ZD7288. Daily treatment of SOD1/G93A mice with ZD7288 partially prevented the early motor function decline and spinal motor neuron death. In summary, sporadic ALS patients with elevated plasma misfolded SOD1 exhibited similar patterns of motor axonal excitability changes as familial ALS patients and ALS mice with mutant SOD1 genes, suggesting the existence of SOD1-associated sporadic ALS. The observed NET pattern of increased inward rectification in the I/V curve was attributable to an elevation in the HCN current in SOD1-associated ALS.

11.
Natl Sci Rev ; 11(9): nwae228, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39144741

RESUMEN

Hyperpolarization stands out as a technique capable of significantly enhancing the sensitivity of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). Dynamic nuclear polarization (DNP), among various hyperpolarization methods, has gained prominence for its efficacy in real-time monitoring of metabolism and physiology. By administering a hyperpolarized substrate through dissolution DNP (dDNP), the biodistribution and metabolic changes of the DNP agent can be visualized spatiotemporally. This approach proves to be a distinctive and invaluable tool for non-invasively studying cellular metabolism in vivo, particularly in animal models. Biomarkers play a pivotal role in influencing the growth and metastasis of tumor cells by closely interacting with them, and accordingly detecting pathological alterations of these biomarkers is crucial for disease diagnosis and therapy. In recent years, a range of hyperpolarized DNP molecular bioresponsive agents utilizing various nuclei, such as 13C, 15N, 31P, 89Y, etc., have been developed. In this context, we explore how these magnetic resonance signals of nuclear spins enhanced by DNP respond to biomarkers, including pH, metal ions, enzymes, or redox processes. This review aims to offer insights into the design principles of responsive DNP agents, target selection, and the mechanisms of action for imaging. Such discussions aim to propel the future development and application of DNP-based biomedical imaging agents.

12.
J Eukaryot Microbiol ; : e13057, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198998

RESUMEN

When mechanical stimulation was applied to free swimming Paramecium, forward swimming velocity transiently increased due to activation of the posterior mechanosensory channels. The behavior response, known as "escape response," requires membrane hyperpolarization and the activation of K-channel type adenylate cyclases. Our hypothesis is that this escape response also involves activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. HCN channels are activated by hyperpolarization and are modulated by cyclic nucleotides such as cAMP and cGMP. They play a critical role in many excitable cells in higher animals. If HCN channels act in Paramecium, this should help to enhance and prolong hyperpolarization, thereby increasing the swimming speed of Paramecium. This study used RNAi to examine the role of the HCN channel 1 in the escape responses by generating hcn1-gene knockdown cells (hcn1-KD). These cells showed reduced mechanically-stimulated escape responses and a lack of cGMP-dependent increases in swimming speed. Electrophysiological experiments demonstrated reduced hyperpolarization upon injection of large negative currents in hcn1-KD cells. This is consistent with a decrease in HCN1 channel activity and changes in the escape response. These findings suggest that HCN1 channels are K+ channels that regulate the escape response of Paramecium by amplifying the hyperpolarizations elicited by posterior mechanical stimulation.

13.
Front Neuroanat ; 18: 1411154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957435

RESUMEN

Introduction: Extraocular muscles are innervated by two anatomically and histochemically distinct motoneuron populations: motoneurons of multiply-innervated fibers (MIF), and of singly-innervated fibers (SIF). Recently, it has been established by our research group that these motoneuron types of monkey abducens and trochlear nuclei express distinct ion channel profiles: SIF motoneurons, as well as abducens internuclear neurons (INT), express strong Kv1.1 and Kv3.1b immunoreactivity, indicating their fast-firing capacity, whereas MIF motoneurons do not. Moreover, low voltage activated cation channels, such as Cav3.1 and HCN1 showed differences between MIF and SIF motoneurons, indicating distinct post-inhibitory rebound characteristics. However, the ion channel profiles of MIF and SIF motoneurons have not been established in human brainstem tissue. Methods: Therefore, we used immunohistochemical methods with antibodies against Kv, Cav3 and HCN channels to (1) examine the human trochlear nucleus in terms of anatomical organization of MIF and SIF motoneurons, (2) examine immunolabeling patterns of ion channel proteins in the distinct motoneurons populations in the trochlear and abducens nuclei. Results: In the examination of the trochlear nucleus, a third motoneuron subgroup was consistently encountered with weak perineuronal nets (PN). The neurons of this subgroup had -on average- larger diameters than MIF motoneurons, and smaller diameters than SIF motoneurons, and PN expression strength correlated with neuronal size. Immunolabeling of various ion channels revealed that, in general, human MIF and SIF motoneurons did not differ consistently, as opposed to the findings in monkey trochlear and abducens nuclei. Kv1.1, Kv3.1b and HCN channels were found on both MIF and SIF motoneurons and the immunolabeling density varied for multiple ion channels. On the other hand, significant differences between SIF motoneurons and INTs were found in terms of HCN1 immunoreactivity. Discussion: These results indicated that motoneurons may be more variable in human in terms of histochemical and biophysiological characteristics, than previously thought. This study therefore establishes grounds for any histochemical examination of motor nuclei controlling extraocular muscles in eye movement related pathologies in the human brainstem.

14.
CNS Neurosci Ther ; 30(7): e14831, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961317

RESUMEN

AIMS: Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS: After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS: Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION: Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.


Asunto(s)
Depresión , Habénula , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Habénula/metabolismo , Habénula/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Masculino , Depresión/metabolismo , Neuralgia/metabolismo , Neuralgia/psicología , Ratones Endogámicos C57BL , Dolor Crónico/metabolismo , Dolor Crónico/psicología , Canales de Potasio
15.
J Magn Reson ; 365: 107740, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047540

RESUMEN

The site-specific signal enhancement provided by parahydrogen induced polarization (PHIP) may be combined with magnetic resonance imaging (MRI) to study chemical and biomolecular processes. However, imaging of hydrogen nuclei (1H) is hampered by background signals arising from the presence of thermally polarized nuclei. Additionally, fast imaging sequences are commonly based on multiple radio-frequency pulses, where the signals resulting from PHIP oscillate due to the evolution with a J-coupling Hamiltonian. In this article, an innovative imaging scheme for single-scan MRI is presented that effectively detects hyperpolarized components while simultaneously canceling out thermal contributions. This method is based on the quenching of inherent oscillations of PHIP-originated signals due to J-couplings during the multipulse sequence and the suppression of thermal signals by spin dynamics and a tailored restructuring of the k-space. A series of numerical simulations on specific two- and three-spin systems serve to support the feasibility of the approach. Furthermore, this theoretical study demonstrates the potential of combining hyperpolarization and long-lived states (PHIP and LLS) in the selected molecules, which could be seen as a preliminary step towards the development of fast imaging techniques, for example in the field of biomolecular research.

16.
Elife ; 132024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073076

RESUMEN

Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.


Asunto(s)
Homeostasis , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Sensilos , Gusto , Animales , Sensilos/fisiología , Sensilos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Gusto/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
17.
Alzheimers Dement ; 20(8): 5629-5646, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38994745

RESUMEN

INTRODUCTION: In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS: To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS: Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION: Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Ratones Transgénicos , Sinapsis , Proteínas tau , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Sinapsis/patología , Sinapsis/metabolismo , Neuronas/metabolismo , Neuronas/patología , Canalopatías/genética , Canalopatías/patología , Masculino , Femenino , Anciano , Modelos Animales de Enfermedad , Tauopatías/patología , Tauopatías/metabolismo
18.
Mol Imaging Biol ; 26(4): 649-657, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992246

RESUMEN

PURPOSE: This study aimed to assess metabolic changes to monitor the progression from normal liver to hepatitis B virus (HBV)-related hepatitis and liver fibrosis using hyperpolarized 13C magnetic resonance imaging (MRI). PROCEDURES: Hepatitis was induced in mice (n = 16) via hydrodynamic injection of HBV 1.2 plasmid (25 µg). Among them, liver fibrosis was induced in the mice (n = 8) through weight-adapted administration of thioacetamide with ethanol. Normal control mice (n = 8) were injected with a phosphate buffer solution. Subsequently, a hyperpolarized 13C MRI was performed on the mouse liver in vivo. The level of hepatitis B surface antigen (HBsAg) in blood serum was measured. Statistical analysis involved comparing the differential metabolite ratios, blood biochemistry values, and body weight among the three groups using the Kruskal-Wallis one-way analysis of variance. RESULTS: HBsAg was absent in the normal and fibrosis groups, while it was detected in the hepatitis group. The ratios of [1-13C] lactate/pyruvate, [1-13C] alanine/pyruvate, [1-13C] lactate/total carbon, and [1-13C] alanine/total carbon were significantly lower in the normal control group than in the hepatitis and fibrosis groups (p < 0.05). Moreover, these ratios were significantly higher in the fibrosis group than in the hepatitis group (p < 0.05). However, no significant differences were observed in either [1-13C] pyruvate-hydrate/pyruvate or [1-13C] pyruvate-hydrate/total carbon among the three groups. CONCLUSIONS: The levels of [1-13C] lactate and [1-13C] alanine in vivo may serve as valuable indicators for differentiating between HBV-related hepatitis, liver fibrosis, and normal liver.


Asunto(s)
Progresión de la Enfermedad , Virus de la Hepatitis B , Cirrosis Hepática , Imagen por Resonancia Magnética , Animales , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/virología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Imagen por Resonancia Magnética/métodos , Hepatitis B/complicaciones , Hepatitis B/diagnóstico por imagen , Masculino , Ratones , Hígado/metabolismo , Hígado/diagnóstico por imagen , Hígado/patología , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/metabolismo , Isótopos de Carbono
19.
ACS Appl Mater Interfaces ; 16(29): 37435-37444, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984763

RESUMEN

Hyperpolarized 13C-labeled fumarate probes tissue necrosis via the production of 13C-malate. Despite its promises in detecting tumor necrosis and kidney injuries, its clinical translation has been limited, primarily due to the low solubility in conventional glassing solvents. In this study, we introduce a new formulation of fumarate for dissolution dynamic nuclear polarization (DNP) by using meglumine as a counterion, a nonmetabolizable derivative of sorbitol. We have found that meglumine fumarate vitrifies by itself with enhanced water solubility (4.8 M), which is expected to overcome the solubility-restricted maximum concentration of hyperpolarized fumarate after dissolution. The achievable liquid-state polarization level of meglumine-fumarate is more than doubled (29.4 ± 1.3%) as compared to conventional dimethyl sulfoxide (DMSO)-mixed fumarate (13.5 ± 2.4%). In vivo comparison of DMSO- and meglumine-prepared 50-mM hyperpolarized [1,4-13C2]fumarate shows that the signal sensitivity in rat kidneys increases by 10-fold. As a result, [1,4-13C2]aspartate and [13C]bicarbonate in addition to [1,4-13C2]malate can be detected in healthy rat kidneys in vivo using hyperpolarized meglumine [1,4-13C2]fumarate. In particular, the appearance of [13C]bicarbonate indicates that hyperpolarized meglumine [1,4-13C2]fumarate can be used to investigate phosphoenolpyruvate carboxykinase, a key regulatory enzyme in gluconeogenesis.


Asunto(s)
Isótopos de Carbono , Fumaratos , Riñón , Solubilidad , Animales , Fumaratos/química , Fumaratos/metabolismo , Ratas , Riñón/metabolismo , Isótopos de Carbono/química , Gluconeogénesis , Masculino , Ratas Sprague-Dawley
20.
Front Psychiatry ; 15: 1365119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911706

RESUMEN

Background: Accompanied by a rapid and effective antidepressant effect, electroconvulsive shock (ECS) can also induce learning and memory impairment. Our previous research reported that metaplasticity is involved in this process. However, the mechanisms still remain unclear. This study investigated the role of I h current in the metaplastic changes and learning and memory impairment induced by ECS in depressive rats. Methods: Depressive rats received ECS after modelling using chronic unpredictable. ZD7288, a type of I h current inhibitor was used to verify the effect of I h current. The sucrose preference test and Morris water maze were used for behavior testing. Changes in metaplasticity was assessed with the LTD/LTP threshold by stimulation at different frequencies. Spontaneous and evoked action potentials (APs) were measured to confirm difference of neuronal excitability. Additionally, the amplitude of I h current was analyzed. Results: ECS exerts antidepressant effect, but also induce spatial learning and memory dysfunction. ECS up-regulates the LTD/LTP threshold. In rats treated with ECS, the frequency of spontaneous and evoked APs is significantly reduced. In addition, ECS induces changes in the intrinsic properties of AP, including a decrease of AP-half width and peak amplitude, and an increase in AP time to peak and post-hyperpolarization potential amplitude. In particular, ECS increases both instantaneous and steady-state I h currents. However, Inhibition of I h current with ZD7288 results in a relief of learning and memory impairment and a decrease in threshold, as well as a significant reversal of whole-cell electrophysiological changes. Conclusion: ECS-induced learning and memory impairment is caused by neuronal hypoexcitability mediated metaplasticity, and upregulation of LTD/LTP threshold by an increase in I h current.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA