Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38602190

RESUMEN

Hydrophilic anti-icing coatings can be energy-effective passive solutions for combating ice accretion and reducing ice adhesion. However, their underlying mechanisms of action remain inferential and are ill-defined from a molecular perspective. Here, we systematically investigate the influence of the counterion identity on the shear ice adhesion strength to cationic polymer coatings having quaternary alkyl ammonium moieties as chargeable groups. Temperature-dependent molecular information on the hydrated polymer films is obtained using total internal reflection (TIR) Raman spectroscopy, complemented with differential scanning calorimetry (DSC) and ellipsometry. Ice adhesion measurements show a pronounced counterion-specific behavior with a sharp increase in adhesion at temperatures that depend on the anion identity, following the order Cl- < F- < SCN- < Br- < I-. Linked to the freezing of hydration water, the specific ordering results from differences in ion pairing and the amount of water present within the polymer film. Moreover, similar effects can be promoted by varying the cross-linking density in the coating while keeping the anion identity fixed. These findings shed new light on low ice adhesion mechanisms and may inspire novel approaches for improved anti-icing coatings.

2.
Biophys Chem ; 301: 107081, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37542837

RESUMEN

Cholesterol is known to significantly modify both the structural and the dynamical properties of lipid membranes. On one side, the presence of free cholesterol molecules has been determined to stiffen the membrane bilayer by stretching the hydrophobic tails. Additionally, recent experimental and computational findings have made evident the fact that cholesterol also alters the dynamics and the hydration properties of the polar head groups of DPPC model lipid membranes. In turn, we have recently shown that the Omega-3 fatty acid docosahexaenoic acid, DHA, counteracts the effect of cholesterol on DPPC membrane's mechanical properties by fluidizing the bilayer. However, such behavior represents in fact a global outcome dominated by the larger lipid hydrophobic tails that neither discriminates between the different parts of the membrane nor elucidates the effect on membrane hydration and binding properties. Thus, we now perform molecular dynamics simulations to scrutinize the influence of DHA on the interfacial behavior of cholesterol-containing lipid membranes by characterizing their hydration properties and their binding to amphiphiles. We find that while cholesterol destabilizes interactions with amphiphiles and slightly weakens the lipid's hydration layer, the incorporation of DHA practically restores the interfacial behavior of pure DPPC.


Asunto(s)
Ácidos Docosahexaenoicos , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Colesterol/química , Simulación de Dinámica Molecular , Programas Informáticos , 1,2-Dipalmitoilfosfatidilcolina/química
3.
Bioengineering (Basel) ; 10(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37237692

RESUMEN

Recently, it was reported that chitin and chitosan exhibited high-proton conductivity and function as an electrolyte in fuel cells. In particular, it is noteworthy that proton conductivity in the hydrated chitin becomes 30 times higher than that in the hydrated chitosan. Since higher proton conductivity is necessary for the fuel cell electrolyte, it is significantly important to clarify the key factor for the realization of higher proton conduction from a microscopic viewpoint for the future development of fuel cells. Therefore, we have measured proton dynamics in the hydrated chitin using quasi-elastic neutron scattering (QENS) from the microscopic viewpoint and compared the proton conduction mechanism between hydrated chitin and chitosan. QENS results exhibited that a part of hydrogen atoms and hydration water in chitin are mobile even at 238 K, and the mobile hydrogen atoms and their diffusion increase with increasing temperature. It was found that the diffusion constant of mobile protons is two times larger and that the residence time is two times faster in chitin than that in chitosan. In addition, it is revealed from the experimental results that the transition process of dissociable hydrogen atoms between chitin and chitosan is different. To realize proton conduction in the hydrated chitosan, the hydrogen atoms of the hydronium ions (H3O+) should be transferred to another hydration water. By contrast, in hydrated chitin, the hydrogen atoms can transfer directly to the proton acceptors of neighboring chitin. It is deduced that higher proton conductivity in the hydrated chitin compared with that in the hydrated chitosan is yielded by the difference of diffusion constant and the residence time by hydrogen-atom dynamics and the location and number of proton acceptors.

4.
Adv Healthc Mater ; 12(21): e2203252, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154112

RESUMEN

Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.


Asunto(s)
Neoplasias , Zinc , Unión Proteica , Polímeros/metabolismo , ADN/metabolismo , Cationes , Transfección , Técnicas de Transferencia de Gen , Polietilenglicoles/metabolismo , Neoplasias/terapia
5.
Life (Basel) ; 13(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36836676

RESUMEN

Incoherent inelastic and quasi-elastic neutron scattering (INS) and terahertz time-domain spectroscopy (THz-TDS) are spectroscopy methods that directly detect molecular dynamics, with an overlap in the measured energy regions of each method. Due to the different characteristics of their probes (i.e., neutron and light), the information obtained and the sample conditions suitable for each method differ. In this review, we introduce the differences in the quantum beam properties of the two methods and their associated advantages and disadvantages in molecular spectroscopy. Neutrons are scattered via interaction with nuclei; one characteristic of neutron scattering is a large incoherent scattering cross-section of a hydrogen atom. INS records the auto-correlation functions of atomic positions. By using the difference in neutron scattering cross-sections of isotopes in multi-component systems, some molecules can be selectively observed. In contrast, THz-TDS observes the cross-correlation function of dipole moments. In water-containing biomolecular samples, the absorption of water molecules is particularly large. While INS requires large-scale experimental facilities, such as accelerators and nuclear reactors, THz-TDS can be performed at the laboratory level. In the analysis of water molecule dynamics, INS is primarily sensitive to translational diffusion motion, while THz-TDS observes rotational motion in the spectrum. The two techniques are complementary in many respects, and a combination of the two is very useful in analyzing the dynamics of biomolecules and hydration water.

6.
Bioengineering (Basel) ; 9(10)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36290566

RESUMEN

Chitosan, an environmentally friendly and highly bio-producible material, is a potential proton-conducting electrolyte for use in fuel cells. Thus, to microscopically elucidate proton transport in hydrated chitosan, we employed the quasi-elastic neutron scattering (QENS) technique. QENS analysis showed that the hydration water, which was mobile even at 238 K, moved significantly more slowly than the bulk water, in addition to exhibiting jump diffusion. Furthermore, upon increasing the temperature from 238 to 283 K, the diffusion constant of water increased from 1.33 × 10-6 to 1.34 × 10-5 cm2/s. It was also found that a portion of the hydrogen atoms in chitosan undergo a jump-diffusion motion similar to that of the hydrogen present in water. Moreover, QENS analysis revealed that the activation energy for the jump-diffusion of hydrogen in chitosan and in the hydration water was 0.30 eV, which is close to the value of 0.38 eV obtained from the temperature-dependent proton conductivity results. Overall, it was deduced that a portion of the hydrogen atoms in chitosan dissociate and protonate the interacting hydration water, resulting in the chitosan exhibiting proton conductivity.

7.
Int J Mol Sci ; 23(9)2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35563512

RESUMEN

G-quadruplexes (G4s) are noncanonical forms of DNA involved in many key genome functions. Here, we exploited UV Resonance Raman scattering to simultaneously explore the vibrational behavior of a human telomeric G4 (Tel22) and its aqueous solvent as the biomolecule underwent thermal melting. We found that the OH stretching band, related to the local hydrogen-bonded network of a water molecule, was in strict relation with the vibrational features of the G4 structure as a function of temperature. In particular, the modifications to the tetrahedral ordering of the water network were strongly coupled to the DNA rearrangements, showing changes in temperature that mirrored the multi-step melting process of Tel22. The comparison between circular dichroism and Raman results supported this view. The present findings provide novel insights into the impact of the molecular environment on G4 conformation. Improving current knowledge on the solvent structural properties will also contribute to a better understanding of the role played by water arrangement in the complexation of G4s with ligands.


Asunto(s)
G-Cuádruplex , Dicroismo Circular , Reordenamiento Génico , Humanos , Solventes , Telómero/genética , Vibración , Agua
8.
J Colloid Interface Sci ; 610: 347-358, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34923272

RESUMEN

The production of new cost-effective biocompatible sorbent sustainable materials, with natural origins, able to remove heavy metals from water resources is nowadays highly desirable in order to reduce pollution and increase clean water availability. In this context, self-assembled protein materials with amyloid structures seem to have a great potential as natural platform for a broader development of highly-tunable structures. In this work we show how protein particulates, a generic form of protein aggregates, with spherical micro sized shape can be used as adsorbents of Pb2+ ions from aqueous solution. The effect of pH, ionic medium, ionic strength and temperature of the metal ion solution on the adsorption ability and affinity has been evaluated revealing the complexity of adsorption mechanisms which are the result of the balance of specific interactions with functional groups in protein structure and not specific ones common to all polypeptide chains, and possibly related to amyloid state and to modification of particulates hydration layer.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Iones , Cinética , Temperatura , Agua , Contaminantes Químicos del Agua/análisis
9.
Life (Basel) ; 11(10)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34685367

RESUMEN

We combined broad-band depolarized light scattering and infrared spectroscopies to study the properties of hydration water in a lysozyme-trehalose aqueous solution, where trehalose is present above the concentration threshold (30% in weight) relevant for biopreservation. The joint use of the two different techniques, which were sensitive to inter-and intra-molecular degrees of freedom, shed new light on the molecular mechanism underlying the interaction between the three species in the mixture. Thanks to the comparison with the binary solution cases, we were able to show that, under the investigated conditions, the protein, through preferential hydration, remains strongly hydrated even in the ternary mixture. This supported the water entrapment scenario, for which a certain amount of water between protein and sugar protects the biomolecule from damage caused by external agents.

10.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502252

RESUMEN

The biology and chemistry of proteins and peptides are inextricably linked with water as the solvent. The reason for the high stability of some proteins or uncontrolled aggregation of others may be hidden in the properties of their hydration water. In this study, we investigated the effect of stabilizing osmolyte-TMAO (trimethylamine N-oxide) and destabilizing osmolyte-urea on hydration shells of two short peptides, NAGMA (N-acetyl-glycine-methylamide) and diglycine, by means of FTIR spectroscopy and molecular dynamics simulations. We isolated the spectroscopic share of water molecules that are simultaneously under the influence of peptide and osmolyte and determined the structural and energetic properties of these water molecules. Our experimental and computational results revealed that the changes in the structure of water around peptides, caused by the presence of stabilizing or destabilizing osmolyte, are significantly different for both NAGMA and diglycine. The main factor determining the influence of osmolytes on peptides is the structural-energetic similarity of their hydration spheres. We showed that the chosen peptides can serve as models for various fragments of the protein surface: NAGMA for the protein backbone and diglycine for the protein surface with polar side chains.


Asunto(s)
Péptidos/química , Agua/química , Fenómenos Químicos , Glicina/análogos & derivados , Glicina/química , Glicilglicina/química , Metilaminas/química , Simulación de Dinámica Molecular , Presión Osmótica , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Urea/química
11.
Biochem Biophys Res Commun ; 577: 124-129, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34509724

RESUMEN

This exposition reveals the effect of glucose as a molecular crowder on the solvent environment in proximity of the protein surface in putative folded (Ubiquitin) and intrinsically disordered (dimeric Amyloid beta) states. Atomistic simulations reveal markedly higher structural perturbation in the disordered systems due to crowding effects, while the folded state retains overall structural fidelity. Key hydrophobic contacts in the disordered dimer are lost. However, glucose induced crowding results in elevated hydration on surfaces of both protein systems. Despite evident differences in their structural responses, the hydration layer of both the folded and disordered states display a distinct enhancement in lifetimes of mean residence and rotational relaxation under the hyperglycemic conditions. The results are crucial in the light of emergent co-solvent induced biological phenomena in crowded media.


Asunto(s)
Glucosa/química , Proteínas Intrínsecamente Desordenadas/química , Simulación de Dinámica Molecular , Pliegue de Proteína , Multimerización de Proteína , Proteínas/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Glucosa/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/metabolismo , Conformación Proteica , Proteínas/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Agua/química
12.
Molecules ; 26(17)2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34500836

RESUMEN

The dynamics of protein-water fluctuations are of biological significance. Molecular dynamics simulations were performed in order to explore the hydration dynamics of staphylococcal nuclease (SNase) at different temperatures and mutation levels. A dynamical transition in hydration water (at ~210 K) can trigger larger-amplitude fluctuations of protein. The protein-water hydrogen bonds lost about 40% in the total change from 150 K to 210 K, while the Mean Square Displacement increased by little. The protein was activated when the hydration water in local had a comparable trend in making hydrogen bonds with protein- and other waters. The mutations changed the local chemical properties and the hydration exhibited a biphasic distribution, with two time scales. Hydrogen bonding relaxation governed the local protein fluctuations on the picosecond time scale, with the fastest time (24.9 ps) at the hydrophobic site and slowest time (40.4 ps) in the charged environment. The protein dynamic was related to the water's translational diffusion via the relaxation of the protein-water's H-bonding. The structural and dynamical properties of protein-water at the molecular level are fundamental to the physiological and functional mechanisms of SNase.


Asunto(s)
Simulación de Dinámica Molecular , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Mutación
13.
J Colloid Interface Sci ; 604: 705-718, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34280768

RESUMEN

HYPOTHESES: Additives are commonly used to tune macromolecular conformational transitions. Among additives, trehalose is an excellent bioprotectant and among responsive polymers, PNIPAM is the most studied material. Nevertheless, their interaction mechanism so far has only been hinted without direct investigation, and, crucially, never elucidated in comparison to proteins. Detailed insights would help understand to what extent PNIPAM microgels can effectively be used as synthetic biomimetic materials, to reproduce and study, at the colloidal scale, isolated protein behavior and its sensitivity to interactions with specific cosolvents or cosolutes. EXPERIMENTS: The effect of trehalose on the swelling behavior of PNIPAM microgels was monitored by dynamic light scattering; Raman spectroscopy and molecular dynamics simulations were used to explore changes of solvation and dynamics across the swelling-deswelling transition at the molecular scale. FINDINGS: Strongly hydrated trehalose molecules develop water-mediated interactions with PNIPAM microgels, thereby preserving polymer hydration below and above the transition while drastically inhibiting local motions of the polymer and of its hydration shell. Our study, for the first time, demonstrates that slowdown of dynamics and preferential exclusion are the principal mechanisms governing trehalose effect on PNIPAM microgels, at odds with preferential adsorption of alcohols, but in full analogy with the behavior observed in trehalose-protein systems.


Asunto(s)
Microgeles , Resinas Acrílicas , Trehalosa , Agua
14.
Talanta ; 226: 122096, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33676653

RESUMEN

Hydrated secondary mineralization readily forms on the surface of UO2 particles exposed to humidity in an oxidizing environment. The oxygen stable isotope composition of the secondary uranium oxide may reflect that of the water vapor, as well as the hydrogen and oxygen stable isotopic composition of the mineral hydration water. The geospatial organization of δ2H and δ18O values of atmospheric humidity and precipitation is increasingly well understood, which suggests that the hydrogen and oxygen stable isotopes in secondary mineral hydration water may yield information on the environment in which the mineralization formed. UO2 powders were exposed to air with constant 30%, 61%, and 91% relative humidity, and constant H and O stable isotope composition. Aliquots were sampled from the UO2 materials at intervals of 1-10 days through the total humidity exposure duration of 180 days. Scanning electron microscopy, transmission electron microscopy, and x-ray diffraction analysis of the humidity-exposed UO2 indicates that schoepite/metaschoepite [(UO3)•2H2O] secondary phases had formed on the underlying UO2. The δ2H and δ18O values of mineral hydration waters were determined by thermogravimetry-enabled isotope ratio infrared spectroscopy (TGA-IRIS). Results indicate that hydrogen in the surface sorbed and mineral hydration waters is exchangeable and thus their δ2H values are difficult to interpret. However, oxygen in these waters is less exchangeable, and thus the oxygen stable isotope composition of the schoepite/metaschoepite hydration water is likely to be related to that of the exposure water vapor. After formation of schoepite/metaschoepite, the δ18O values of the hydration water in schoepite/metaschoepite does not change in response to changes in exposure vapor δ18O values, which suggests that the δ18O values of the hydration water is relatively durable. These findings suggest that information about the origin and storage history of a UO2 sample may be discernable from δ18O values of schoepite/metaschoepite hydration water.

15.
Molecules ; 25(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036320

RESUMEN

We report results on the translational dynamics of the hydration water of the lysozyme protein upon cooling obtained by means of molecular dynamics simulations. The self van Hove functions and the mean square displacements of hydration water show two different temperature activated relaxation mechanisms, determining two dynamic regimes where transient trapping of the molecules is followed by hopping phenomena to allow to the structural relaxations. The two caging and hopping regimes are different in their nature. The low-temperature hopping regime has a time scale of tenths of nanoseconds and a length scale on the order of 2-3 water shells. This is connected to the nearest-neighbours cage effect and restricted to the supercooling, it is absent at high temperature and it is the mechanism to escape from the cage also present in bulk water. The second hopping regime is active at high temperatures, on the nanoseconds time scale and over distances of nanometers. This regime is connected to water displacements driven by the protein motion and it is observed very clearly at high temperatures and for temperatures higher than the protein dynamical transition. Below this temperature, the suppression of protein fluctuations largely increases the time-scale of the protein-related hopping phenomena at least over 100 ns. These protein-related hopping phenomena permit the detection of translational motions of hydration water molecules longly persistent in the hydration shell of the protein.


Asunto(s)
Proteínas/química , Agua/química , Simulación de Dinámica Molecular
16.
Biophys Rev ; 12(5): 1111-1115, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32940859

RESUMEN

In this invited Commentary, as requested, I will walk the reader through my research path starting from my first works on proteins and their hydration water dynamics to my most recent activity on the use of ionic liquids (ILs) as molecular handles to control and manipulate cell membrane mechano-elasticity and cell migration. In doing so I will comment on my research activity on polymers, proteins, natural bioprotectants, phospholipid bilayers, amyloids and cells, which I have carried out by combining several different experimental and computational approaches including neutron scattering, atomic force microscopy, classical molecular dynamics and ab initio calculations, used in tandem with several biological assays and a palette of complementary techniques ranging from calorimetry to static and dynamic light scattering. In parallel to this biophysical/chemical-physical core activity, a smaller portion of my interest and effort has been-I may say always-dedicated to the development of a new neutron scattering method/spectroscopy for dynamics based on "elastic" scattering. I will comment on this instrumental side of my research as well and show its relationship with the biophysical core of my activity. The overall picture that emerges is, from my personal prospective, of a coherent 13-year research path based on curiosity and a problem-solving approach, in which the fundamental importance of inter- and trans-disciplinary approaches and collaborations is emerging on the way, forecasting a prosper and intriguing future for physics in biology and in nanomedicine and bionanotechnology applications.

17.
Front Chem ; 8: 455, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32626684

RESUMEN

Neutron diffraction was used to study the behavior of water present in phospholipid multilamellar stacks from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) at cryogenic temperatures. Evidence was found for the existence of a highly viscous phase of water that exists between 180 and 220 K based on the observation that water can leave the intermembrane space at these low temperatures. Similar measurements are described in the literature for purple membrane (PM) samples. From a comparison with results from this natural membrane by using the same flash-cooling protocol, it is found that in the case of pure lipid samples, less water is trapped and the water flows out at lower temperatures. This suggests that the water is less hindered in its movements than in the PM case. It is shown that at least the Lß'-phase of DMPC can be trapped likely by flash cooling; upon heating to about 260 K, it transforms to another phase that was not fully characterized.

18.
Macromol Biosci ; 20(6): e1900410, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32285628

RESUMEN

The bio and chemical physics of protein-polymer conjugates are related to parameters that characterize each component. With this work, it is intended to feature the dynamical properties of the protein-polymer conjugate myoglobin (Mb)-poly(ethyl ethylene phosphate), in the ps and ns time scales, in order to understand the respective roles of the protein and of the polymer size in the dynamics of the conjugate. Elastic and quasi-elastic neutron scattering is performed on completely hydrogenated samples with variable number of polymer chains covalently attached to the protein. The role of the polymer length in the protein solvation and internal dynamics is investigated using two conjugates formed by polymers of different molecular weight. It is confirmed that the flexibility of the complex increases with the number of grafted polymer chains and that a sharp dynamical transition appears when either grafting density or polymer molecular weight are high. It is shown that protein size is crucial for the polymer structural organization and interaction on the protein surface and it is established that the glass properties of the polymer change upon conjugation. The results give a better insight of the equivalence of the polymer coating and the role of water on the surface of proteins.


Asunto(s)
Mioglobina/química , Poliésteres/química , Animales , Caballos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118046, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31954360

RESUMEN

Near-infrared (NIR) spectra are sensitive to the variation of water structure. In this work, NIR spectroscopy was used to investigate the variation of hydration water during the aggregation of R2/wt induced by heparin. The osmolytes, urea and trehalose, were used to slow down and speed up the aggregation. The spectra of R2/wt aqueous solution obtained by NIR spectroscopy at 37 °C were adopted to analyze the structure of water during the aggregation. The spectral features of different water species were observed by principal component analysis (PCA) from the resolution enhanced NIR spectra. The existence of the water molecules with one and two hydrogen bonds around the NH and CH groups of R2/wt, respectively, was suggested, and the variation of the hydrogen-bonded water was found to be an indicator to monitor the process of aggregation. Then, the variation of the water species during the aggregation was analyzed by two-dimensional correlation spectroscopy. The water hydrogen bonded with NH group was found to change earlier than the water around the hydrophobic groups. The results suggest that ß-sheet forms though the hydrogen bonds of amide groups in the early stage of the aggregation, and the destruction of the hydrogen bond network of the water around the side chains maybe the main reason for the formation of the ordered amyloid fibers.

20.
Molecules ; 25(2)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936161

RESUMEN

The mode of action of Pt- and Pd-based anticancer agents (cisplatin and Pd2Spm) was studied by characterising their impact on DNA. Changes in conformation and mobility at the molecular level in hydrated DNA were analysed by quasi-elastic and inelastic neutron scattering techniques (QENS and INS), coupled to Fourier transform infrared (FTIR) and microRaman spectroscopies. Although INS, FTIR and Raman revealed drug-triggered changes in the phosphate groups and the double helix base pairing, QENS allowed access to the nanosecond motions of the biomolecule's backbone and confined hydration water within the minor groove. Distinct effects were observed for cisplatin and Pd2Spm, the former having a predominant effect on DNA´s spine of hydration, whereas the latter had a higher influence on the backbone dynamics. This is an innovative way of tackling a drug´s mode of action, mediated by the hydration waters within its pharmacological target (DNA).


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Cisplatino/química , Cisplatino/farmacología , ADN/química , ADN/efectos de los fármacos , Elasticidad/efectos de los fármacos , Metales/química , Metales/farmacología , Difracción de Neutrones , Neutrones , Conformación de Ácido Nucleico/efectos de los fármacos , Paladio/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Espermina/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA