Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(28): 36401-36412, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958058

RESUMEN

Combining the merits of the dendrite-free formation of a Mg anode and the fast kinetics of Li ions, the Mg-Li hybrid ion batteries (MLIBs) are considered an ideal energy storage system. However, the lack of advanced cathode materials limits their further practical application. Herein, we report a dual strategy of morphology optimization and interlayer expansion for the construction of hierarchical flower-like VS2 architecture coated by N-doped amorphous carbon layers. This tailored hierarchical flower-like structure coupled with homogeneous N-doped amorphous carbon layers cooperatively provide more active sites and buffer volume changes, thus realizing the enhancement of capacity and structural stability. Moreover, the enlarged interlayer spacing caused by the cointercalation of polyvinylpyrrolidone and ammonium ions can effectively promote the charge transfer rate and facilitate the rapid ion diffusion, as further demonstrated by electrochemical results and theoretical calculations. These features endow the hierarchical flower-like VS2 cathode with superior specific energy density (644.4 Wh kg-1, average voltage of 1.2 V vs Mg2+/Mg) and excellent rate capability (181.1 mAh g-1 at 2000 mA g-1). Systematic ex situ characterization measurements are employed to reveal the ion storage mechanism, which confirms that Li+ storage plays a leading role in the capacity contribution of MLIBs. Our strategy is in favor of providing useful insights to design and construct MLIBs with high energy density and excellent rate performance.

2.
J Colloid Interface Sci ; 675: 52-63, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38964124

RESUMEN

Construction of hierarchical architecture with suitable band alignment for graphitic carbon nitride (g-C3N4) played a pivotal role in enhancing the efficiency of photocatalysts. In this study, a novel attapulgite-intercalated g-C3N4/ZnIn2S4 nanocomposite material (ZIS/CN/ATP, abbreviated as ZCA) was successfully synthesized using the freeze-drying technique, thermal polymerization, and a simple low-temperature hydrothermal method. Attapulgite (ATP) was intercalated into g-C3N4 to effectively regulate its interlayer structure. The results reveal a substantial enlargement of its internal space, thereby facilitating the provision of additional active sites for improved dispersibility of ZnIn2S4. Notably, the optimized photocatalyst, comprising a mass ratio of ATP, g-C3N4, and ZnIn2S4 at 1:1:2.5 respectively, achieves an outstanding hydrogen evolution rate of 3906.15 µmol g-1h-1, without the need for a Pt co-catalyst. This rate surpasses that of pristine g-C3N4 by a factor of 475 and ZnIn2S4 by a factor of 5, representing a significant improvement in performance. This significant enhancement can be primarily attributed to the higher specific surface area, richer active sites, broadened light response range, and efficient interfacial charge transfer channels of the ZCA composite photocatalyst. Furthermore, the Z-scheme photocatalytic mechanism for the sandwich-like layered structure heterojunction was thoroughly investigated using diverse characterization techniques. This work offers new insights for enhancing photocatalytic performance through the expanded utilization of natural minerals, paving the way for future advancements in this field.

3.
J Colloid Interface Sci ; 668: 213-222, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677210

RESUMEN

Regarding carbon-based electrodes, simultaneously establishing a well-defined meso-porous architecture, introducing abundant hetero-atoms and improving the graphitization degree can effectively enhance their capacitive performance. However, it remains a significant challenge to achieve a good balance between defects and graphitization degree. In this study, the porous structure and composition of carbon materials are co-optimised through a 'dual-function' strategy. Briefly, K3Fe(C2O4)3 and H3BO3 were hybridised with a gelatin aqueous solution to form a homogeneous composite hydrogel, followed by lyophilisation and carbonisation. Owing to the dual functionality of raw materials, the graphitization, activation and hetero-atom doping processes can occur simultaneously during a one-step high-temperature treatment. The resultant carbon material exhibits a high graphitization degree (ID/IG = 0.9 ± 0.1), high hetero-atom content (N: 9.0 ± 0.3 at.%, B: 6.9 ± 0.5 at.%) and a large specific area (1754 ± 58 m2/g). The as-prepared electrode demonstrates a superior capacitance of 383 ± 1F g-1 at 1 A/g. Interestingly, the cyclic voltammetry (CV) curves exhibit a distinctive pair of broad redox peaks, which is uncommon in KOH electrolyte. Experiment data and density functional theory (DFT) simulation verify that N-5, B co-doping enhances the activity of the faradic reaction of carbon electrodes in KOH electrolyte. Furthermore, the fabricated Zn-ion hybrid supercapacitor (ZHSC) based on this carbon electrode delivers a high-energy density of 140.7 W h kg-1 at a power density of 840 W kg-1.

4.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473922

RESUMEN

Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Materiales Biocompatibles/química , Ingeniería de Tejidos , Elasticidad , Cartílago
5.
Small ; 20(9): e2306698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840390

RESUMEN

Hierarchical architecture engineering is desirable in integrating the physical-chemical behaviors and macroscopic properties of materials, which present great potential for developing multifunctional microwave absorption materials. However, the intrinsic mechanisms and correlation conditions among cellular units have not been revealed, which are insufficient to maximize the fusion of superior microwave absorption (MA) and derived multifunctionality. Herein, based on three models (disordered structure, porous structure, lamellar structure) of structural units, a range of MXene-aerogels with variable constructions are fabricated by a top-down ice template method. The aerogel with lamellar structure with a density of only 0.015 g cm-3 exhibits the best MA performance (minimum reflection loss: -53.87 dB, effective absorption bandwidth:6.84 GHz) at a 6 wt.% filling ratio, which is preferred over alternative aerogels with variable configurations. This work elucidates the relationship between the hierarchical architecture and the superior MA performance. Further, the MXene/CoNi Composite aerogel with lamellar structure exhibits >90% compression stretch after 1000 cycles, excellent compressive properties, and elasticity, as well as high hydrophobicity and thermal insulation properties, broadening the versatility of MXene-based aerogel applications. In short, through precise microstructure design, this work provides a conceptually novel strategy to realize the integration of electromagnetic stealth, thermal insulation, and load-bearing capability simultaneously.

6.
Adv Sci (Weinh) ; 11(6): e2305642, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145356

RESUMEN

High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized - interacting non-covalently with core fiber but bridging covalently with polymer matrix - to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber-matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber-matrix adhesion facilitated by nanofiber-aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in-plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high-performance composites.

7.
Planta ; 258(4): 74, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668722

RESUMEN

MAIN CONCLUSION: The hierarchical architecture of chromatins affects the gene expression level of glandular secreting trichomes and the artemisinin biosynthetic pathway-related genes, consequently bringing on huge differences in the content of artemisinin and its derivatives of A. annua. The plant of traditional Chinese medicine "Qinghao" is called Artemisia annua L. in Chinese Pharmacopoeia. High content and the total amount of artemisinin is the main goal of A. annua breeding, nevertheless, the change of chromatin organization during the artemisinin synthesis process has not been discovered yet. This study intended to find the roles of chromatin structure in the production of artemisinin through bioinformatics and experimental validation. Chromosome conformation capture analysis was used to scrutinize the interactions among chromosomes and categorize various scales of chromatin during artemisinin synthesis in A. annua. To confirm the effect of the changes in chromatin structure, Hi-C and RNA-sequencing were performed on two different strains to find the correlation between chromatin structure and gene expression levels on artemisinin synthesis progress and regulation. Our results revealed that the frequency of intra-chromosomal interactions was higher in the inter-chromosomal interactions between the root and leaves on a high artemisinin production strain (HAP) compared to a low artemisinin production strain (LAP). We found that compartmental transition was connected with interactions among different chromatins. Interestingly, glandular secreting trichomes (GSTs) and the artemisinin biosynthetic pathway (ABP) related genes were enriched in the areas which have the compartmental transition, reflecting the regulation of artemisinin synthesis. Topologically associated domain boundaries were associated with various distributions of genes and expression levels. Genes associated with ABP and GST in the adjacent loop were highly expressed, suggesting that epigenetic regulation plays an important role during artemisinin synthesis and glandular secreting trichomes production process. Chromatin structure could show an important status in the mechanisms of artemisinin synthesis process in A. annua.


Asunto(s)
Artemisia annua , Artemisininas , Cromatina/genética , Artemisia annua/genética , Epigénesis Genética , Fitomejoramiento , Expresión Génica
8.
J Colloid Interface Sci ; 646: 98-106, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187052

RESUMEN

The development of cheap, abundant, and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is urgently needed for hydrogen production from water splitting. Herein, we demonstrate a novel OER electrocatalyst (NiFe(CN)5NO/Ni3S2) prepared by coupling Ni3S2 and a bimetallic metal-organic framework (MOF) of NiFe(CN)5NO on nickel foam (NF) via a simple two-step route. The NiFe(CN)5NO/Ni3S2 electrocatalyst displays an interesting rod-like hierarchical architecture assembled by ultrathin nanosheets. The combination of NiFe(CN)5NO and Ni3S2 optimizes the electronic structure of the metal active sites and increases the electron transfer capability. Benefitting from the synergistic effect between Ni3S2 and the NiFe-MOF as well as the unique hierarchical architecture, the NiFe(CN)5NO/Ni3S2/NF electrode exhibits excellent electrocatalytic OER activity with ultralow overpotentials of 162/197 mV at 10/100 mA cm-2 and an ultrasmall Tafel slope of 26 mV dec-1 in 1.0 M KOH, which are far superior to those of the individual NiFe(CN)5NO, Ni3S2 and commercial IrO2 catalysts. In particular, unlike common metal sulfide-based electrocatalysts, the composition, morphology and microstructure of the NiFe-MOF/Ni3S2 composite electrocatalyst can be well retained after the OER, which endows it with fantastic long-term durability. This work offers a new strategy for the construction of novel and high-efficiency MOF-based composite electrocatalysts for energy applications.

9.
J Colloid Interface Sci ; 645: 22-32, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37137275

RESUMEN

Low-dimensional cell-decorated three-dimensional (3D) hierarchical structures are considered excellent candidates for achieving remarkable microwave absorption. In the present work, a one-dimensional (1D) carbon nanotube (CNT)-decorated 3D crucifix carbon framework embedded with Co7Fe3/Co5.47N nanoparticles (NPs) was fabricated by the in-situ pyrolysis of a trimetallic metal-organic framework (MOF) precursor (ZIF-ZnFeCo). Co7Fe3/Co5.47N NPs were uniformly dispersed on the carbon matrix. The 1D CNT nanostructure was well regulated on the 3D crucifix surface by changing the pyrolysis temperature. The synergistic effect of 1D CNT and the 3D crucifix carbon framework increased the conductive loss, and Co7Fe3/Co5.47N NPs induced interfacial polarization and magnetic loss; thus, the composite manifested superior microwave absorption performance. The optimum absorption intensity was -54.0 dB, and the effective absorption frequency bandwidth reached 5.4 GHz at a thickness of 1.65 mm. The findings of this work could provide significant guidance for the fabrication of MOF-derived hybrids for high-performance microwave absorption applications.

10.
Adv Mater ; 35(30): e2302086, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37086153

RESUMEN

Dual-ion batteries (DIBs) have been attracting great attention for the storage of stationary energy due to their low cost, environmental friendliness, and high working voltage. However, most reports on DIBs involve low-mass-loading electrodes (<2.5 mg), while the use of high mass-loading electrodes (>10 mg cm-2 ), which are critical for practical application, is overlooked. Herein, an integrated free-standing functional carbon positive electrode (named MSCG) with a "point-line-plane" hierarchical architecture at the practical level of ultrahigh mass-loading (>50 mg cm-2 ) is developed for high-energy-density DIBs. The rationally designed microstructure and the advanced assembly method that is adopted produce a well-interconnected ion/electron transport channel in the MSCG electrode, which confers rapid ion/electron kinetic properties while maintaining good mechanical properties. Consequently, the DIBs with ultrahigh-mass-loading MSCG electrodes exhibits a high discharge capacity of 100.5 mAh g-1 at 0.5 C (loading mass of 50 mg cm-2 ) and a long-term cycling performance with a capacity retention of 87.7% at 1 C after 500 cycles (loading mass of 23 mg cm-2 ). Moreover, the DIB with the ultrahigh-mass-loading positive electrode achieves a high energy density of 379 Wh kg-1 based on the mass of electrode materials, the highest value recorded to date for any DIBs.

11.
J Colloid Interface Sci ; 637: 251-261, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36706721

RESUMEN

Owing to price-boom and low-reserve of Lithium ion batteries (LIBs), cost-cutting and well-stocked sodium ion batteries (SIBs) attract a lot of attention, aiming to develop an effective energy storage and conversion equipment. As a typical anode for SIBs, Iron sulfide (FeS) is difficult to maintain the high theoretical capacity. Structural instability and inherent low conductivity limit the cyclic and rate performance of FeS. Herein, hierarchical architecture of FeS-FeSe2 coated with nitrogen-doped carbon (NC) is obtained by single-step solvothermal method and two-stage high-temperature treatments. Specifically, lattice imperfections provided by heterogeneous interfaces increase the Na+ storage sites and fasten ion/electron transfer. Synergistic effect induced by the hierarchical architecture effectively enhances the electrochemical activity and reduces the resistance, which contributes to the transfer kinetics of Na+. In addition, the phenomenon that heterogeneous interfaces provide more active site and extra migration Na+ path is also proved by density functional theory (DFT). As an anode for SIBs, FeS-FeSe2/NC (FSSe/C) delivers highly reversible capacity (704.5 mAh·g-1 after 120 cycles at 0.2 A·g-1), excellent rate performance (326.3 mAh·g-1 at 12 A·g-1) and long-lasting durability (492.3 mAh·g-1 after 1000 cycles at 4 A·g-1 with 100 % capacity retention). Notably, the full battery, assembled with FSSe/C and Na3V2(PO4)3/C (NVP/C), delivers reversible capacity of 252.1 mAh·g-1 after 300 cycles at 1 A·g-1. This work provides a facile method to construct a hierarchical architecture anode for high-performance SIBs.

12.
Carbohydr Polym ; 301(Pt A): 120292, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436850

RESUMEN

In order to explore the contributions of hemicelluloses to the assembly and mechanical properties of cellulose networks, the bacterial cellulose (BC) composites containing xylan and glucomannan were prepared to mimic the polysaccharides network of plant cell walls. Both polysaccharides could induce the change of diameters of cellulose ribbons and influence the crystallization of cellulose. Besides, small-angle X-ray scattering (SAXS) demonstrated that xylan inhibited the assembly of microfibrils into cellulose ribbons, while glucomannan promoted the packing of microfibrils. The changes of cellulose crystalline structure and assembly pattern of cellulose contributed to the lower tensile strength and higher strain at break of the BC composites as compared with the BC. The results provide a profound insight into the structure-property relationships of cellulose networks affected by hemicelluloses, which could be conducive to the development of cellulose biomaterials.


Asunto(s)
Celulosa , Xilanos , Celulosa/química , Xilanos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Polisacáridos/química , Bacterias/química
13.
Biomater Res ; 26(1): 68, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461132

RESUMEN

BACKGROUND: Destruction of alveolar bone and periodontal ligament due to periodontal disease often requires surgical treatment to reconstruct the biological construction and functions of periodontium. Despite significant advances in dental implants in the past two decades, it remains a major challenge to adapt bone grafts and barrier membrane in surgery due to the complicated anatomy of tooth and defect contours. Herein, we developed a novel biphasic hierarchical architecture with modularized functions and shape based on alveolar bone anatomy to achieve the ideal outcomes. METHODS: The integrated hierarchical architecture comprising of nonstoichiometric wollastonite (nCSi) scaffolds and gelatin methacrylate/silanized hydroxypropyl methylcellulose (GelMA/Si-HPMC) hydrogel membrane was fabricated by digital light processing (DLP) and photo-crosslinked hydrogel injection technique respectively. The rheological parameters, mechanical properties and degradation rates of composite hydrogels were investigated. L-929 cells were cultured on the hydrogel samples to evaluate biocompatibility and cell barrier effect. Cell scratch assay, alkaline phosphatase (ALP) staining, and alizarin red (AR) staining were used to reveal the migration and osteogenic ability of hydrogel membrane based on mouse mandible-derived osteoblasts (MOBs). Subsequently, a critical-size one-wall periodontal defect model in dogs was prepared to evaluate the periodontal tissue reconstruction potential of the biphasic hierarchical architecture. RESULTS: The personalized hydrogel membrane integrating tightly with the nCSi scaffolds exhibited favorable cell viability and osteogenic ability in vitro, while the scratch assay showed that osteoblast migration was drastically correlated with Si-HPMC content in the composite hydrogel. The equivalent composite hydrogel has proven good physiochemical properties, and its membrane exhibited potent occlusive effect in vivo; meanwhile, the hierarchical architectures exerted a strong periodontal regeneration capability in the periodontal intrabony defect models of dogs. Histological examination showed effective bone and periodontal ligament regeneration in the biomimetic architecture system; however, soft tissue invasion was observed in the control group. CONCLUSIONS: Our results suggested that such modularized hierarchical architectures have excellent potential as a next-generation oral implants, and this precisely tuned guided tissue regeneration route offer an opportunity for improving periodontal damage reconstruction and reducing operation sensitivity.

14.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36430315

RESUMEN

Early detection of melanoma remains a daily challenge due to the increasing number of cases and the lack of dermatologists. Thus, AI-assisted diagnosis is considered as a possible solution for this issue. Despite the great advances brought by deep learning and especially convolutional neural networks (CNNs), computer-aided diagnosis (CAD) systems are still not used in clinical practice. This may be explained by the dermatologist's fear of being misled by a false negative and the assimilation of CNNs to a "black box", making their decision process difficult to understand by a non-expert. Decision theory, especially game theory, is a potential solution as it focuses on identifying the best decision option that maximizes the decision-maker's expected utility. This study presents a new framework for automated melanoma diagnosis. Pursuing the goal of improving the performance of existing systems, our approach also attempts to bring more transparency in the decision process. The proposed framework includes a multi-class CNN and six binary CNNs assimilated to players. The players' strategies is to first cluster the pigmented lesions (melanoma, nevus, and benign keratosis), using the introduced method of evaluating the confidence of the predictions, into confidence level (confident, medium, uncertain). Then, a subset of players has the strategy to refine the diagnosis for difficult lesions with medium and uncertain prediction. We used EfficientNetB5 as the backbone of our networks and evaluated our approach on the public ISIC dataset consisting of 8917 lesions: melanoma (1113), nevi (6705) and benign keratosis (1099). The proposed framework achieved an area under the receiver operating curve (AUROC) of 0.93 for melanoma, 0.96 for nevus and 0.97 for benign keratosis. Furthermore, our approach outperformed existing methods in this task, improving the balanced accuracy (BACC) of the best compared method from 77% to 86%. These results suggest that our framework provides an effective and explainable decision-making strategy. This approach could help dermatologists in their clinical practice for patients with atypical and difficult-to-diagnose pigmented lesions. We also believe that our system could serve as a didactic tool for less experienced dermatologists.


Asunto(s)
Queratosis , Melanoma , Nevo Pigmentado , Nevo , Enfermedades de la Piel , Neoplasias Cutáneas , Humanos , Dermoscopía/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Melanoma/diagnóstico por imagen , Melanoma/patología , Redes Neurales de la Computación , Nevo/diagnóstico por imagen , Computadores
15.
Sci Total Environ ; 849: 157711, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35914594

RESUMEN

Biocompatible, durable and high catalytic cathode is crucial for the performance of photosynthetic microalgae microbial fuel cell (PMMFC). In this study, gadolinium-cobalt (Gd-Co) nanosheet arrays were coated on N-doped carbon spheres (N-CSs) that were supported using nickel foam (NF), to form a unique 3D hierarchical architecture of Gd-Co@N-CSs/NF cathode material. The morphology and structure of Gd-Co@N-CSs/NF was investigated by physicochemical characterization. The electricity generation and stability of NF, N-CSs/NF, Co@N-CSs/NF and Gd-Co@N-CSs/NF were evaluated using a dual-chamber PMMFC system with Chlorella vulgaris (C. vulgaris) in the cathode chamber. Results showed that doption of Gd to the cathode material resulted in Gd-Co@N-CSs/NF exhibiting superior catalytic activity for the oxygen reduction reaction (ORR), with an ORR peak potential of 0.78 V (vs. RHE). The electron transfer number (n) of Gd-Co@N-CSs/NF was 3.906, indicating ORR was mainly realized via 4e- transfer pathway. Gd-Co@N-CSs/NF achieved a maximum power density of 115.9 mW m-2 and an open circuit voltage of 614.8 mV, higher than the other three cathode materials. Gd-Co@N-CSs/NF exhibited excellent stability during 360 h of the PMMFC process, only dropping 5.8 % of maximum voltage. The cell density of C. vulgaris (3.7 × 1010 cells L-1) in Gd-Co@N-CSs/NF system was significantly higher than those of NF, N-CSs/NF and Co@N-CSs/NF. This study shows that Gd-Co@N-CSs/NF is a promising cathode material and may be highly beneficial for the enhancement of PMMFC systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Chlorella vulgaris , Microalgas , Carbono/metabolismo , Chlorella vulgaris/metabolismo , Cobalto , Electrodos , Gadolinio , Microalgas/metabolismo , Níquel , Oxígeno/metabolismo
16.
Adv Mater ; 34(28): e2202256, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35546336

RESUMEN

The lithium-sulfur (Li-S) battery is considered as an appealing candidate for next-generation electrochemical energy storage systems because of high energy and low cost. Nonetheless, its development is plagued by the severe polysulfide shuttling and sluggish reaction kinetics. Although single-atom catalysts (SACs) have emerged as a promising remedy to expedite sulfur redox chemistry, the mediocre single-atom loading, inferior atomic utilization, and elusive catalytic pathway handicap their practical application. To tackle these concerns, in this work, unsaturated Fe single atoms with high loading capacity (≈6.32 wt%) are crafted on a 3D hierarchical C3 N4 architecture (3DFeSA-CN) by means of biotemplated synthesis. By electrokinetic analysis and theoretical calculations, it is uncovered that the 3DFeSA-CN harnesses robust electrocatalytic activity to boost dual-directional sulfur redox. As a result, S@3DFeSA-CN can maintain a durable cyclic performance with a negligible capacity decay rate of 0.031% per cycle over 2000 cycles at 1.0 C. More encouragingly, an assembled Li-S battery with a sulfur loading of 5.75 mg cm-2 can harvest a high areal capacity of 6.18 mAh cm-2 . This work offers a promising solution to optimize the carbonaceous support and coordination environment of SACs, thereby ultimately elevating dual-directional sulfur redox in pragmatic Li-S batteries.

17.
ACS Appl Mater Interfaces ; 14(14): 16369-16378, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35354278

RESUMEN

Layered double hydroxides (LDHs) are considered a promising catalyst for photocatalytic CO2 reduction due to their broad photoresponse, facile channels for electron transfer, and the presence of abundant defects. Herein, we reported for the first time the fabrication of a novel photocatalyst MIL-100@NiMn-LDH with a hierarchical architecture by selecting MIL-100 (Mn) as a template to provide Mn3+ for the in situ growth of ultrathin NiMn-LDH nanosheets. Moreover, the in situ growth strategy exhibited excellent universality toward constructing MIL-100@LDH hierarchical architectures. When applied in the photocatalytic CO2 reduction reaction, the as-prepared MIL-100@NiMn-LDH exhibited excellent CH4 selectivity of 88.8% (2.84 µmol h-1), while the selectivity of H2 was reduced to 1.8% under visible light irradiation (λ > 500 nm). Such excellent catalytic performance can be attributed to the fact that (a) the MIL-100@NiMn-LDH hierarchical architectures with exposed catalytic active sites helped to enhance the CO2 adsorption and activation and (b) the presence of rich oxygen vacancies and coordinately unsaturated metal sites in MIL-100@NiMn-LDH that optimized the band gap and accelerated the separation/transport of photoinduced charges.

18.
Front Psychol ; 13: 970214, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698593

RESUMEN

The article reviews the history development of artificial neural networks (ANNs), then compares the differences between ANNs and brain networks in their constituent unit, network architecture, and dynamic principle. The authors offer five points of suggestion for ANNs development and ten questions to be investigated further for the interdisciplinary field of brain simulation. Even though brain is a super-complex system with 1011 neurons, its intelligence does depend rather on the neuronal type and their energy supply mode than the number of neurons. It might be possible for ANN development to follow a new direction that is a combination of multiple modules with different architecture principle and multiple computation, rather than very large scale of neural networks with much more uniformed units and hidden layers.

19.
Adv Sci (Weinh) ; 9(5): e2104001, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34936228

RESUMEN

Mimicking the multi-scale highly ordered hydroxyapatite (HAp) nanocrystal structure of the natural tooth enamel remains a great challenge. Herein, a bottom-up step-by-step strategy is developed using extrusion-based 3D printing technology to achieve a high-precision dental crown with multi-scale highly ordered HAp structure. In this study, hybrid resin-based composites (RBCs) with "supergravity +" HAp nanorods can be printed smoothly via direct ink writing (DIW) 3D printing, induced by shear force through a custom-built nozzle with a gradually shrinking channel. The theoretical simulation results of finite element method are consistent with the experimental results. The HAp nanorods are first highly oriented along a programmable printing direction in a single printed fiber, then arranged in a layer by adjusting the printing path, and finally 3D printed into a highly ordered and complex crown structure. The printed samples with criss-crossed layers by interrupting crack propagation exhibit a flexural strength of 134.1 ± 3.9 MPa and a compressive strength of 361.6 ± 8.9 MPa, which are superior to the corresponding values of traditional molding counterparts. The HAp-monodispersed RBCs are successfully used to print strong and bioactive dental crowns with a printing accuracy of 95%. This new approach can help provide customized components for the clinical restoration of teeth.


Asunto(s)
Durapatita , Impresión Tridimensional , Fuerza Compresiva , Coronas , Resistencia Flexional
20.
Bioinspir Biomim ; 17(1)2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34673560

RESUMEN

Porous ceramic materials are attractive candidates for thermal insulation. However, effective ways to develop porous ceramics with high mechanical and thermal insulation performances are still lacking. Herein, an anisotropic porous silica ceramic with hierarchical architecture, i.e. long-range aligned lamellar layers composed of hollow silica spheres, was fabricated applying a facile bidirectional freezing method. Due to such anisotropic structure, the as-prepared porous silica ceramic displays low thermal conductivity across the layers and high compressive strength along the layers. Additionally, the anisotropic porous silica ceramic is fire-resistant. As a proof of concept, a mini-house was roofed with the anisotropic porous silica ceramic, showing that the indoor temperature could be stabilized against environmental temperature change, making this porous ceramic a promising candidate for energy efficient buildings and other industrial applications. Our study highlights the possibility of combining intrinsically exclusive properties in engineering materials through constructing biomimetic porous structures.


Asunto(s)
Cerámica , Anisotropía , Cerámica/química , Fuerza Compresiva , Congelación , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA