Your browser doesn't support javascript.
loading
Enhancing Composite Toughness Through Hierarchical Interphase Formation.
Gupta, Sumit; Sohail, Tanvir; Checa, Marti; Rohewal, Sargun S; Toomey, Michael D; Kanbargi, Nihal; Damron, Joshua T; Collins, Liam; Kearney, Logan T; Naskar, Amit K; Bowland, Christopher C.
Afiliación
  • Gupta S; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Sohail T; Advanced Computing for Chemistry and Materials Group, National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Checa M; Functional Atomic Force Microscope Group, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Rohewal SS; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Toomey MD; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Kanbargi N; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Damron JT; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Collins L; Functional Atomic Force Microscope Group, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Kearney LT; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Naskar AK; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
  • Bowland CC; Carbon and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
Adv Sci (Weinh) ; 11(6): e2305642, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38145356
ABSTRACT
High strength and ductility are highly desired in fiber-reinforced composites, yet achieving both simultaneously remains elusive. A hierarchical architecture is developed utilizing high aspect ratio chemically transformable thermoplastic nanofibers that form covalent bonding with the matrix to toughen the fiber-matrix interphase. The nanoscale fibers are electrospun on the micrometer-scale reinforcing carbon fiber, creating a physically intertwined, randomly oriented scaffold. Unlike conventional covalent bonding of matrix molecules with reinforcing fibers, here, the nanofiber scaffold is utilized - interacting non-covalently with core fiber but bridging covalently with polymer matrix - to create a high volume fraction of immobilized matrix or interphase around core reinforcing elements. This mechanism enables efficient fiber-matrix stress transfer and enhances composite toughness. Molecular dynamics simulation reveals enhancement of the fiber-matrix adhesion facilitated by nanofiber-aided hierarchical bonding with the matrix. The elastic modulus contours of interphase regions obtained from atomic force microscopy clearly indicate the formation of stiffer interphase. These nanoengineered composites exhibit a ≈60% and ≈100% improved in-plane shear strength and toughness, respectively. This approach opens a new avenue for manufacturing toughened high-performance composites.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania