Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.016
Filtrar
1.
Colloids Surf B Biointerfaces ; 245: 114206, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39255746

RESUMEN

In this study, a simple but novel preparation method was developed by heating a mixture of dipotassium glycyrrhizinate (DG) and bisdemethoxycurcumin (BDMC) in aqueous solution, and a DG self-assembled nanomicelles-loading BDMC (named B@DNM) ophthalmic solution was successfully fabricated with this heating-driven process. AutoDock simulation analysis revealed that Pi-Alkyl hydrophobic interactions between BDMC and DG played important role in this self-assembled B@DNM. The optimized B@DNM, with a DG:BDMC mass ratio of 40:1 and heating time of 6 h, had a high encapsulation efficacy of 96.70 ± 0.13 % and particle sizes of 117.50 ± 6.07 nm. The apparent solubility of BDMC in B@DNM was significantly improved from bare BDMC (10.40 ± 0.16 µg/ml to 1405.60 ± 6.78 µg/ml) in artificial tears after 4 h incubation. B@DNM had great storage stability as an aqueous ophthalmic solution. B@DNM showed significantly improved in vitro antioxidant activity. Ex vivo hen's egg test-chorioallantoic membrane assay and long-term in vivo mouse eye tolerance evaluation showed that B@DNM had good ocular safety profiles. B@DNM showed improved in vivo corneal permeation profiles in the mouse eyes. Topical administration of B@DNM achieved a significantly improved efficacy on a mouse model of dry eye disease (DED), including accelerating corneal wound healing, restoring corneal sensitivity, and inhibiting corneal neovascularization. Regulation of the high mobility group box 1 signal pathway was involved in B@DNM's strong therapeutic effects. These findings demonstrate that heating is a simple method to prepare ocular nanoformulation with DG, and B@DNM might be a potential ocular drug for treating DED.

2.
Small ; : e2404310, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252649

RESUMEN

Azobenzene (azo)-based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo-based fabric composed of tetra-ortho-fluorinated photo-liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo-charging (green light) and discharging (blue light) under visible light range, solvent-free operation, long-term energy storage (706 days), and good capacity of releasing high-temperature heat (80-95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy-storage performance upon 1500 bending cycles, 18-h washing or 6-h soaking. The generated heat from charged fabric is facilitated by the Z-to-E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room-temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.

3.
Food Chem ; 463(Pt 1): 141078, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243612

RESUMEN

A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and PF treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.

4.
Small Methods ; : e2400460, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248667

RESUMEN

"Flash heating" that transiently generates high temperatures above 1000 °C has great potential in synthesizing new materials with unprecedently properties. Up to now, the realization of "flash heating" still relies on the external power, which requires sophisticated setups for vast energy input. In this study, a mechanochemically triggered, self-powered flash heating approach is proposed by harnessing the enthalpy from chemical reactions themselves. Through a model reaction between Mg3N2/carbon and P2O5, it is demonstrated that this self-powered flash heating is controllable and compatible with conventional devices. Benefit from the self-powered flash heating, the resulting product has a nanoporous structure with a uniform distribution of phosphorus (P) nanoparticles in carbon (C) nanobowls with strong P─-C bonds. Consequently, the P/C composite demonstrates remarkable energy storage performance in lithium-ion batteries, including high capacity (1417 mAh g-1 at 0.2 A g-1), robust cyclic stability (935 mAh g-1 at 2 A g-1 after 800 cycles, 91.6% retention), high-rate capability (739 mAh g-1 at 20 A g-1), high loading performance (3.6 mAh cm-2 after 100 cycles), and full cell cyclic stability (90% retention after 100 cycles). This work broadens the flash heating concept and can potentially find application in various fields.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39249514

RESUMEN

PURPOSE: To evaluate the impact of temperature-controlled pars plana vitrectomy (PPV) on structural and functional outcomes in a rabbit eye model in vivo. METHODS: Ten healthy New Zealand White rabbits underwent temperature-controlled PPV in the right eye (group A), using a device specifically designed to heat the infusion fluid/air and integrated into the vitrectomy machine, and conventional PPV in the left eye (group B). Both eyes received ophthalmic examination and electroretinography (ERG) before and 1 week postoperatively. After 1-week ERG, rabbits were enucleated and then sacrificed. Histological and immunohistochemical examinations were performed on enucleated eyes and expression of glial fibrillary acidic protein (GFAP) and vimentin investigated. RESULTS: Postoperatively, only group B showed significantly decreased amplitude and increased latency of a-wave at 3 cd·s/m2 (p = 0.001 and 0.005, respectively). Significant increase of b-wave latency at 0.01 cd·s/m2 was detected in both groups (p = 0.019 and 0.023, respectively). Postoperatively, amplitude of oscillatory potentials (OPs) increased significantly in group A (p = 0.023) and decreased in group B. In both groups, OPs latency significantly increased at 1-week test (P < 0.05). A greater number of eyes without structural retinal alterations was detected in group A compared to group B (6 vs 5, respectively). GFAP expression was higher in group B than group A, even if the difference was not statistically significant. CONCLUSION: Temperature-controlled PPV resulted in more favorable functional and structural outcomes in rabbit eyes compared with conventional PPV, supporting the potential beneficial role of the intraoperative management of intraocular temperature in vitreoretinal surgery.

6.
Heliyon ; 10(16): e35787, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224326

RESUMEN

This research investigated the effectiveness of radio frequency (RF) heating as a treatment for lead-contaminated soil, assessing its impact through dielectric constant measurements. Using water-soluble lead (II) acetate trihydrate, the study analyzed the impact of RF heating on soil dielectric properties under various soil moisture conditions (high, medium, and low) and electric field strengths (112.5, 150, 225, and 450 kV/m). The results indicated that soil temperature increased with lead concentration, highlighting significant changes in soil thermodynamics. Under high-humidity conditions, temperature increases were more pronounced, suggesting that higher lead concentrations elevate soil temperatures. Moreover, RF heating consistently reduced the dielectric constant as lead concentration increased, which was especially evident at higher electric field strengths. The study found that the soil resistivity approached that of uncontaminated soil, particularly at 450 kV/m electric field strength, with the highest removal rate of 46.154%. This investigation provides valuable insights into the application of RF heating for soil quality improvement in lead-contaminated environments, demonstrating how dielectric properties can reflect those of uncontaminated soil.

7.
Food Chem X ; 23: 101741, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253015

RESUMEN

In this study, the structural characteristics, functional properties, and in vitro gastrointestinal digestibility of glutenin from Tiger nut seed meal (TNSMG) treated by microwave (140-700 W, 20-60 s) and water-bath heating (40-100 °C, 10-30 min) were investigated. Analysis of the surface hydrophobicity, intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy indicated that both microwave and water-bath heating treatments caused structure changes of TNSMG. The results showed an increase in the exposure of sulfhydryl groups and the content of ß-sheet, coupled with a decrease in the content of α-helix and ß-turn. These structural changes contributed to the improved solubility, foamability, emulsification properties, and digestibility of TNSMG under proper thermal treatment conditions. TNSMG exhibited the best solubility (68.48%) and foamability (85.56%) after water-bath heating treatment for 20 min at 80 °C. Furthermore, TNSMG showed the best emulsification property (9.61 m2/g) and digestibility (78.58%) when treated by microwave treatment at 560 W for 40 s.

8.
Heliyon ; 10(16): e36328, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253200

RESUMEN

In China's central heating, there are two modes for calculating heating costs, which are divided into Charging by flow mode which charges according to the amount of use and Charging by area mode which charges according to the floor area. The Charging by flow mode has been increasingly adopted by numerous urban central heating buildings. Thus it is worth investigating whether occupants experience varying levels of thermal comfort under these two modes. To address this, a field test and subjective questionnaire survey were conducted on residential buildings in cold regions of China during the heating season. The study assessed 134 residential occupants utilizing radiator heating, comprising 66 in Charging by area and 68 in Charging by flow modes. A collection of 1206 valid data points was obtained, with 609 in Charging by area mode and 597 in Charging by flow mode. The findings reveal noteworthy disparities in the duration, area, and strength of heating equipment usage between the two modes. While there are no marked variances in the interior and exterior environmental conditions under both modes, residents in the Charging by flow mode experience enhanced thermal comfort, acceptability and expectation, as well as better air quality satisfaction. Perceived control can greatly enhance individuals' thermal sensation in temperatures below 18 °C and above 24 °C. The impact of perceived control on thermal expectation is linear with temperature adjustments. The heightened degree of sensing control in Charging by flow mode lowers residents' expectations of high temperatures, broadens the range of acceptable low temperatures and accomplishes energy conservation and carbon reduction while ensuring optimal comfort.

9.
Foods ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39272490

RESUMEN

Heat-moisture treatment (HMT) is a widely used method for modifying starch properties with the potential to reduce the digestibility of high-amylose starch (HAS). This study aimed to optimize the HMT conditions for HAS and apply the resulting HMT-HAS to triticale noodles to develop low-glycemic-index products. HMT significantly increased the resistant starch (RS) content and decreased the rapidly digestible starch (RDS) content of HAS. The treatment conditions-temperature, heating time, and moisture content-were found to significantly influence the starch composition. Optimal HMT conditions were determined using response surface methodology: a temperature of 108 °C, a heating time of 5.8 h, and a moisture content of 25.50%. Under these conditions, the RS content of HMT-HAS was 60.23%, nearly double that of the untreated sample. Increasing the level of HMT-HAS in triticale noodles led to significant decreases in short-range order, relative crystallinity, and viscosities, while the RS content increased from 12.08% to 34.41%. These findings suggest that incorporating HMT-HAS into triticale noodles effectively enhances starch digestive resistance, supporting the development of functional, low-glycemic-index triticale-based foods.

10.
Foods ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272592

RESUMEN

Applications of millet bran dietary fiber (MBDF) in the food industry are limited by its poor hydration properties. Herein, MBDF was modified by heating, xylanase and cellulase treatment separately combined with carboxymethylation, acetylation, and phosphate crosslinking, and the effects of the modified MBDFs on heat-induced egg white protein gel (H-EWG) were studied. The results showed that three composite modifications, especially heating and dual enzymolysis combined with carboxymethylation, increased the surface area, soluble fiber content, and hydration properties of MBDF (p < 0.05). MBDF and the modified MBDFs all made the microstructure of H-EWG denser and decreased its α-helix content. Three composite modifications, especially heating and dual enzymolysis combined with carboxymethylation, enhanced the improving effect of MBDF on the WRA (from 24.89 to 35.53 g/g), pH, hardness (from 139.93 to 323.20 g), chewiness, and gumminess of H-EWPG, and enhanced the gastric stability at 3-5 g/100 g. MBDFs modified with heating and dual enzymolysis combined with acetylation or crosslinking were more effective in increasing the antioxidant activity of the gastrointestinal hydrolysates of H-EWG than MBDF (p < 0.05). Overall, heating, xylanase and cellulase treatment separately combined with carboxymethylation, acetylation and crosslinking can enhance the hydration properties and the improving effect of millet bran fibers on H-EWG properties.

11.
Polymers (Basel) ; 16(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39274040

RESUMEN

Conventional asphalt roads are noisy. Currently, there are two main types of mainstream noise-reducing pavements: pore acoustic absorption and damping noise reduction. However, a single noise reduction method has limited noise reduction capability, and porous noise-reducing pavements have a shorter service life. Therefore, this paper aimed to improve the noise-damping performance of porous asphalt mixture by adding rubber granules and extending its service life using electromagnetic induction heating self-healing technology. Porosity and permeability coefficient test, Cantabro test, immersion Marshall stability test, freeze-thaw splitting test, a low-temperature three-point bending experiment, and Hamburg wheel-tracking test were conducted to investigate the pavement performance and water permeability coefficients of the mixtures. A tire drop test and the standing-wave tube method were conducted to explore their noise reduction performance. Induction heating installation was carried out to study the heating rate and healing performance. The results indicated that the road performance of the porous asphalt mixture tends to reduce with an increasing dosage of rubber granules. The road performance is not up to the required standard when the dosage of rubber granules reaches 3%. The mixture's performance of damping and noise tends to increase with the increase of rubber granule dosage. Asphalt mixtures with different rubber granule dosages have different noise absorption properties, and the mixture with 2% rubber granules has the best overall performance (a vibration attenuation coefficient of 7.752 and an average absorption factor of 0.457). The optimum healing temperature of the porous asphalt mixture containing rubber granules and steel wool fibers is 120 °C and the healing rate is 74.8% at a 2% rubber granule dosage. This paper provides valuable insights for improving the noise reduction performance and service life of porous asphalt pavements while meeting road performance standards.

12.
Polymers (Basel) ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39274129

RESUMEN

Electro-conductive films with excellent flexibility and thermal behavior have great potential in the fields of wearable electronics, artificial muscle, and soft robotics. Herein, we report a super-elastic and electro-conductive composite film with a sandwich structure. The composite film was constructed by spraying Polyvinyl alcohol (PVA) polymers onto a buckled conductive carbon nanotube-polydimethylsiloxane (CNTs-PDMS) composite film. In this system, the PVA and PDMS provide water sensing and stretchability, while the coiled CNT film offers sufficient conductivity. Notably, the composite film possesses high stretchability (205%), exceptional compression sensing ability, humility sensing ability, and remarkable electrical stability under various deformations. The produced CNT composite film exhibited deformation (bending/twisting) and high electro-heating performance (108 °C) at a low driving voltage of 2 V. The developed CNT composite film, together with its exceptional sensing and electrothermal performance, provides the material with promising prospects for practical applications in wearable electronics.

13.
J Infect ; : 106271, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278276

RESUMEN

OBJECTIVES: We aimed to evaluate the effectiveness of alternating magnetic fields AMF) combined with antibiotics in reducing Staphylococcus aureus biofilm on metal implants in a large animal model, compared to antibiotics alone. METHODS: Metal plates were inoculated with a clinical MRSA strain and then implanted into thirty-three ewes divided into three groups: positive control, linezolid only, and a combination of linezolid and AMF. Animals had either titanium or cobalt-chrome plates and were sacrificed at 5- or 21-days post-implantation. Blood and tissue samples were collected at various time points post-AMF treatment. RESULTS: In vivo efficacy studies demonstrated significant biofilm reduction on titanium and cobalt-chrome implants with AMF-linezolid combination treatment compared to controls. Significant bacterial reductions were also observed in surrounding tissues and bones. Cytokine analysis showed improved inflammatory responses with combination therapy, and histopathology confirmed reduced inflammation, necrosis, and bacterial presence, especially at 5 days post-implantation. CONCLUSIONS: This study demonstrates that combining AMF with antibiotics significantly reduces biofilm-associated infections on metal implants in a large animal model. Numerical simulations confirmed targeted heating, and in vivo results showed substantial bacterial load reduction and reduced inflammatory response. These findings support the potential of AMF as a non-invasive treatment for prosthetic joint infections.

14.
Nano Lett ; 24(37): 11567-11572, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230046

RESUMEN

Rewarming cryopreserved samples requires fast heating to avoid devitrification, a challenge previously attempted by magnetic nanoparticle-mediated hyperthermia. Here, we introduce Fe3O4@SiO2 nanorods as the heating elements to manipulate the heating profile to ensure safe rewarming and address the issue of uneven heating due to inhomogeneous particle distribution. The magnetic anisotropy of the nanorods allows their prealignment in the cryoprotective agent (CPA) during cooling and promotes subsequent rapid rewarming in an alternating magnetic field with the same orientation to prevent devitrification. More importantly, applying an orthogonal static magnetic field at a later stage could decelerate heating, effectively mitigating local overheating and reducing CPA toxicity. Furthermore, this orientational configuration offers more substantial heating deceleration in areas of initially higher heating rates, therefore reducing temperature variations across the sample. The efficacy of this method in regulating heating rate and improving rewarming uniformity has been validated using both gel and porcine artery models.


Asunto(s)
Nanotubos , Animales , Nanotubos/química , Porcinos , Dióxido de Silicio/química , Crioprotectores/química , Criopreservación/métodos , Calefacción , Campos Magnéticos , Calor , Nanopartículas de Magnetita/química
15.
Front Robot AI ; 11: 1443379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282248

RESUMEN

Transforming planar structures into volumetric objects typically requires manual folding processes, akin to origami. However, manual intervention at sub-centimeter scales is impractical. Instead, folding is achieved using volume-changing smart materials that respond to physical or chemical stimuli, be it with direct contact such as hydration, pH, or remotely e.g., light or magnetism. The complexity of small-scale structures often restricts the variety of smart materials used and the number of folding sequences. In this study, we propose a method to sequentially self-fold millimeter scale origami using magnetic induction heating at 150 kHz and 3.2 mT. Additionally, we introduce a method for designing self-folding overhand knots and predicting the folding sequence using the magneto-thermal model we developed. This methodology is demonstrated to sequentially self-fold by optimizing the surface, placement, and geometry of metal workpieces, and is validated through the self-folding of various structures, including a 380 m m 2 croissant, a 321 mm2 box, a 447 mm2 bio-mimetic Mimosa pudica leaf, and an overhand knot covering 524 mm2. Our work shows significant potential for miniature self-folding origami robots owing to the novel sequential folding approach and the ability to achieve remote and tetherless self-folding within constrained environments.

16.
Heliyon ; 10(17): e37119, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39286084

RESUMEN

A nanocrystalline alloy, with an iron-based composition (Fe58.5Si16.7B6.5Nb5.1Cu13.2) and a Curie temperature of 570 °C, was investigated for its effectiveness as magnetic shielding films in an induction heating system. The primary focus of the research was to evaluate the shielding performance of the 3-turned (9-layered) shielding films with dimensions of 135 mm × 17 mm × 0.15 mm. Upon winding, these films formed a cylindrical structure that enveloped the coil, with a diameter of 13.9 mm and a height of 17 mm. The results showed that increasing the degree of fragmentation within the nanocrystalline shielding films significantly reduced the magnetic permeability by decreasing the real component from 11,500 to 400 and the imaginary part from 2800 to 20. However, a lower degree of fragmentation led to a 10 % increase in the resistance (Rs) of the heating module, although this effect was less pronounced as the relative permeability continued to increase. Furthermore, observations on preheating time to a set temperature of 400 °C and total energy consumption over a duration of 250s revealed an initial downward trend, followed by a rapid increase that even exceeded the initial values as the magnetic permeability of the nanocrystalline shielding films augmented. Notably, the study emphasized that nanocrystalline shielding films with a relative permeability value of 1000 demonstrated exceptional magnetic shielding performance, resulting in a 12.5 % reduction in preheat time and 7 % less energy consumption during preheating. In addition to empirical findings, the study developed a theoretical model elucidating the shielding mechanism inherent in induction heating systems. This model serves as a robust framework for the application of nanocrystalline shielding materials in such systems, laying the groundwork for enhanced magnetic shielding capabilities in future applications.

17.
MethodsX ; 13: 102933, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39286441

RESUMEN

Thermal sensors mounted on drones (unoccupied aircraft systems) are popular and effective tools for monitoring cryptic animal species, although few studies have quantified sampling error of animal counts from thermal images. Using decoys is one effective strategy to quantify bias and count accuracy; however, plastic decoys do not mimic thermal signatures of representative species. Our objective was to produce heat signatures in animal decoys to realistically match thermal images of live animals obtained from a drone-based sensor. We tested commercially available methods to heat plastic decoys of three different size classes, including chemical foot warmers, manually heated water, electric socks, pad, or blanket, and mini and small electric space heaters. We used criteria in two categories, 1) external temperature differences from ambient temperatures (ambient difference) and 2) color bins from a palette in thermal images obtained from a drone near the ground and in the air, to determine if heated decoys adequately matched respective live animals in four body regions. Three methods achieved similar thermal signatures to live animals for three to four body regions in external temperatures and predominantly matched the corresponding yellow color bins in thermal drone images from the ground and in the air. Pigeon decoys were best and most consistently heated with three-foot warmers. Goose and deer decoys were best heated by mini and small space heaters, respectively, in their body cavities, with a heated sock in the head of the goose decoy. The materials and equipment for our best heating methods were relatively inexpensive, commercially available items that provide sustained heat and could be adapted to various shapes and sizes for a wide range of avian and mammalian species. Our heating methods could be used in future studies to quantify bias and validate methodologies for drone surveys of animals with thermal sensors.•We determined optimal heating methods for plastic animal decoys with inexpensive and commercially available equipment to mimic thermal signatures of live animals.•Methods could be used to quantify bias and improve thermal surveys of animals with drones in future studies.

18.
Sci Rep ; 14(1): 20957, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251632

RESUMEN

The mismatch between solar radiation resources and building heating demand on a seasonal scale makes cross-seasonal heat storage a crucial technology, especially for plateau areas. Utilizing phase change materials with high energy density and stable heat output effectively improves energy storage efficiency. This study integrates cascaded phase change with a cross-seasonal heat storage system aimed at achieving low-carbon heating. The simulation analyzes heat distribution and temperature changes from the heat storage system to the heating terminal. The results indicate that although the solar collectors operate for 26.3% of the total heat storage and heating period, the cumulative heat stored is 45.4% higher than the total heating load. Heat transferred by the cross-seasonal heat storage system accounts for up to 61.2% of the total heating load. Therefore, the system reduces fuel consumption by 77.6% compared to conventional fossil fuel heating systems. Moreover, radiant floor heating terminals, with a wide range of operating temperatures, match well with cascaded phase change heat storage and can reduce operation time by 19.5% and heat demand by 5.2% compared to conventional radiators. In addition to demonstrating the feasibility of applying cascaded phase change technology in cross-seasonal heat storage heating, this study reveals the lifecycle sustainability due to the shortened heat storage period. The configuration, parameters, and simulation results provide a reference basis for system application and design.

19.
ACS Appl Mater Interfaces ; 16(37): 49474-49483, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39231248

RESUMEN

In this paper, we present the design and evaluation of an intelligent MEMS sensor employing the oxidized medium-entropy alloy (O-MEA) of FeCoNi as the gas-sensing material. Due to the specific catalytic exothermic reaction of the O-MEA on H2/CO, the sensor shows great selectivity for H2 and CO at 150 °C of the integrated microheater in the MEMS device, with the theoretical detection limit of 0.3 ppm for H2 and 0.29 ppm for CO. The MEMS heater, capable of instantaneous temperature changes in pulse operation mode, offers a novel approach for thermal modulation of the sensor, which is crucial for the adsorption and reaction of H2/CO molecules on the sensing layer surface. Consequently, we investigate the gas-sensing capabilities of the sensor under pulse heating modes (PHMs) of the MEMS heater and then propose the gas-sensing mechanism. The results indicate that PHMs significantly not only reduce the operating temperature and power consumption but also enhance the sensor's functionality by providing multivariable response signals, paving the way for intelligent gas detection. Based on the high selectivity to H2 and CO, transforming the transient sensing curves into two-dimensional images via Gramian Angular Field (GAF) model and subsequent modeling using a convolutional neural network (CNN) algorithm, we have realized efficient and intelligent recognition of H2 and CO. This work provides insight for the development of low-power, high-performance MEMS gas sensors and further intelligence of individual MEMS sensors.

20.
ACS Nano ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284003

RESUMEN

In this study, we investigate the magnetic induction heating induced in a conducting polymer (CP) under alternative magnetic fields (AMFs). Experimental results and numerical simulations have proved that the magneto-thermal conversion of the CP is caused by the induced eddy current, which is related to the shape and intensity of the applied external AMF, and the intrinsic electrical conductivity, macrostructure and microstructure of the CP. By employing various fabrication methods, specific temperature distribution and control of thermal field within conducting polymer films and aerogels could be achieved. To exploit the potential of magnetic induction heating in CP for biomedical applications, we designed a conducting polymer aerogel-based self-adaptive heat patch and demonstrated its AMF-enabled localized heating of skin. In addition to the thermal ablation of tumor cells via magneto-thermal conversion of the CP, the promotion of neuronal differentiation at mild temperature by noninvasive magneto-electrical stimulation has also been demonstrated to be an effective strategy for tissue engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA