Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 21(218): 20240185, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257280

RESUMEN

Biophotonic nanostructures in butterfly wing scales remain fascinating examples of biological functional materials, with intriguing open questions with regard to formation and evolutionary function. One particularly interesting butterfly species, Erora opisena (Lycaenidae: Theclinae), develops wing scales that contain three-dimensional photonic crystals that closely resemble a single gyroid geometry. Unlike most other gyroid-forming butterflies, E. opisena develops discrete gyroid crystallites with a pronounced size gradient hinting at a developmental sequence frozen in time. Here, we present a novel application of a hyperspectral (wavelength-resolved) microscopy technique to investigate the ultrastructural organization of these gyroid crystallites in dry, adult wing scales. We show that reflectance corresponds to crystallite size, where larger crystallites reflect green wavelengths more intensely; this relationship could be used to infer size from the optical signal. We further successfully resolve the red-shifted reflectance signal from wing scales immersed in refractive index liquids with varying refractive index, including values similar to water or cytosol. Such photonic crystals with lower refractive index contrast may be similar to the hypothesized nanostructural forms in the developing butterfly scales. The ability to resolve these fainter signals hints at the potential of this facile light microscopy method for in vivo analysis of nanostructure formation in developing butterflies.


Asunto(s)
Mariposas Diurnas , Microscopía , Alas de Animales , Animales , Alas de Animales/ultraestructura , Microscopía/métodos , Nanoestructuras , Fotones
2.
Angew Chem Int Ed Engl ; : e202413215, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105624

RESUMEN

Gyroid, double diamond and the body-centred "Plumber's nightmare" are the three most common bicontinuous cubic phases in lyotropic liquid crystals and block copolymers. While the first two are also present in solvent-free thermotropics, the latter had never been found. Containing six-fold junctions, it was unlikely to form in the more common phases with rod-like cores normal to the network columns, where a maximum of four branches can join at a junction. The solution has therefore been sought in side-branched mesogens that lie in axial bundles joined at their ends by flexible "hinges". But for the tightly packed double framework, geometric models predicted that the side-chains should be very short. The true Plumber's nightmare reported here, using fluorescent dithienofluorenone rod-like mesogen, has been achieved with, indeed, no side chains at all, but with 6 flexible end-chains. Such molecules normally form columnar phases, but the key to converting a complex helical column-forming mesogen into a framework-forming one was the addition of just one methyl group to each pendant chain. A geometry-based explanation is given.

3.
Front Bioeng Biotechnol ; 12: 1432587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104631

RESUMEN

Introduction: Intervertebral disk degeneration is a growing problem in our society. The degeneration of the intervertebral disk leads to back pain and in some cases to a herniated disk. Advanced disk degeneration can be treated surgically with either a vertebral body fusion or a disk prosthesis. Vertebral body fusion is currently considered the gold standard of surgical therapy and is clearly superior to disk prosthesis based on the number of cases. The aim of this work was the 3D printing of Gyroid structures and the determination of their mechanical properties in a biomechanical feasibility study for possible use as an intervertebral disc prosthesis. Material and methods: Creo Parametric 6.0.6.0 was used to create models with various Gyroid properties. These were printed with the Original Prusa i3 MK3s+. Different flexible filaments (TPU FlexHard and TPU FlexMed, extrudr, Lauterach, Austria) were used to investigate the effects of the filament on the printing results and mechanical properties of the models. Characterization was carried out by means of microscopy and tension/compression testing on the universal testing machine. Results: The 3D prints with the FlexHard and FlexMid filament went without any problems. No printing errors were detected in the microscopy. The mechanical confined compression test resulted in force-deformation curves of the individual printed models. This showed that changing the Gyroid properties (increasing the wall thickness or density of the Gyroid) leads to changes in the force-deformation curves and thus to the mechanical properties. Conlcusion: The flexible filaments used in this work showed good print quality after the printing parameters were adjusted. The mechanical properties of the discs were also promising. The parameters Gyroid volume, wall thickness of the Gyroid and the outer wall played a decisive role for both FlexMed and FlexHard. All in all, the Gyroid structured discs (Ø 50 mm) made of TPU represent a promising approach with regard to intervertebral disc replacement. We would like to continue to pursue this approach in the future.

4.
Front Bioeng Biotechnol ; 12: 1410837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193226

RESUMEN

Triply Periodic Minimal Surfaces (TPMS), such as Gyroid, are widely accepted for bone tissue engineering due to their interconnected porous structures with tunable properties that enable high surface area to volume ratios, energy absorption, and relative strength. Among these topologies, the Fischer-Koch-S (FKS) has also been suggested for compact bone scaffolds, but few studies have investigated these structures beyond computer simulations. FKS scaffolds have been fabricated in metal and polymer, but to date none have been fabricated in a ceramic used in bone tissue engineering (BTE) scaffolds. This study is the first to fabricate ceramic FKS scaffolds and compare them with the more common Gyroid topology. Results showed that FKS scaffolds were 32% stronger, absorbed 49% more energy, and had only 11% lower permeability than Gyroid scaffolds when manufactured at high porosity (70%). Both FKS and Gyroid scaffolds displayed strength and permeability in the low range of trabecular long bones with high reliability (Weibull failure probability) in the normal direction. Fracture modes were further investigated to explicate the quasi-brittle failure exhibited by both scaffold topologies, exploring stress-strain relationships along with scanning electron microscopy for failure analysis. Considering the physical aspects of successful bone tissue engineering scaffolds, FKS scaffolds appear to be more promising for further study as bone regeneration scaffolds than Gyroid due to their higher compressive strength and reliability, at only a small penalty to permeability. In the context of BTE, FKS scaffolds may be better suited than Gyroids to applications where denser bone and strength is prioritized over permeability, as suggested by earlier simulation studies.

5.
Materials (Basel) ; 17(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063887

RESUMEN

The study aims to investigate the modal properties of a 60 × 70 × 80 mm gyroid structure made of Inconel 718 with 67.5% porosity. The geometry model for sample production was created using the software PTC Creo, whereas the geometry model for numerical analysis was created using the Python application ScaffoldStructures. FE analysis was performed using ANSYS 2024 R1 software. Free boundary conditions were used in experimental modal analysis to ensure feasibility. The analysis identified the first four natural frequencies ranging from 10 to 16 kHz. The results revealed that the first natural frequency corresponds to the first torsional frequency about the Z axis, the second to the first flexural mode in the XZ plane, the third to the first bending mode in the YZ plane, and the fourth to the first torsional mode about the X axis. Small differences between the results of numerical and experimental modal analysis can be attributed to geometric errors in the manufactured sample, careless removal from the platform, and due to reduction in the complexity of the numerical FE model. Employing modal analysis of a component, the stiffness of a lightweight component can be revealed. In the case of the sample with the cellular structure of gyroid type, relatively high stiffness regarding the material savings was identified, which can be advantageously used in many applications.

6.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932047

RESUMEN

The gyroid structure is a bio-inspired structure that was discovered in butterfly wings. The geometric design of the gyroid structure in butterfly wings offers a unique combination of strength and flexibility. This study investigated sandwich panels consisting of a 3D-printed gyroid structure core and carbon fiber-reinforced polymer (CFRP) facing skin. A filament fused fabrication 3D printer machine was used to print the gyroid cores with three different relative densities, namely 10%, 15%, and 20%. Polylactic acid (PLA) was used as the printing material for the gyroid. The gyroid structure was then sandwiched and joined by an epoxy resin between CFRP laminates. Polyurethane foam (PUF) was filled into the gyroid core to fill the cavity on the core for another set of samples. Flexural and compression tests were performed on the samples to investigate the mechanical behavior of the sandwiches. Moreover, the two-parameter Weibull distribution was used to evaluate the results statistically. As a result, the sandwich-specific facing stress and core shear strength from the three-point bending test of the composites increased with the increase in sandwich density. Core density controls the flexural characteristics of the sandwich. Adding PUF improves the deflection at the maximum stress and the sustained load after fracture of the sandwich. Compression strength, modulus, and energy absorbed by gyroid core sandwiches and their specific properties are higher than the PUF-filled gyroid core sandwiches at equal sandwich density.

7.
Biomater Adv ; 161: 213899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772133

RESUMEN

Large bone defects, particularly those exceeding the critical size, present a clinical challenge due to the limited regenerative capacity of bone tissue. Traditional treatments like autografts and allografts are constrained by donor availability, immune rejection, and mechanical performance. This study aimed to develop an effective solution by designing gradient gyroid scaffolds with titania (TiO2) surface modification for the repair of large segmental bone defects. The scaffolds were engineered to balance mechanical strength with the necessary internal space to promote new bone formation and nutrient exchange. A gradient design of the scaffold was optimized through Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) simulations to enhance fluid flow and cell adhesion. In vivo studies in rabbits demonstrated that the G@TiO2 scaffold, featuring a gradient structure and TiO2 surface modification, exhibited superior healing capabilities compared to the homogeneous structure and TiO2 surface modification (H@TiO2) and gradient structure (G) scaffolds. At 12 weeks post-operation, in a bone defect representing nearly 30 % of the total length of the radius, the implantation of the G@TiO2 scaffold achieved a 27 % bone volume to tissue volume (BV/TV) ratio, demonstrating excellent osseointegration. The TiO2 surface modification provided photothermal antibacterial effects, enhancing the scaffold's biocompatibility and potential for infection prevention. These findings suggest that the gradient gyroid scaffold with TiO2 surface modification is a promising candidate for treating large segmental bone defects, offering a combination of mechanical strength, bioactivity, and infection resistance.


Asunto(s)
Aleaciones , Propiedades de Superficie , Andamios del Tejido , Titanio , Titanio/química , Animales , Conejos , Andamios del Tejido/química , Aleaciones/química , Regeneración Ósea/efectos de los fármacos , Oseointegración/efectos de los fármacos , Huesos , Ingeniería de Tejidos/métodos , Análisis de Elementos Finitos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
8.
Int J Numer Method Biomed Eng ; 40(6): e3821, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38637289

RESUMEN

Both cell migration and osteogenic differentiation are critical for successful bone regeneration. Therefore, understanding the mechanobiological aspects that govern these two processes is essential in designing effective scaffolds that promote faster bone regeneration. Studying these two factors at different locations is necessary to manage bone regeneration in various sections of a scaffold. Hence, a multiscale computational model was used to observe the mechanical responses of osteoblasts placed in different positions of the trabecular bone and gyroid scaffold. Fluid shear stresses in scaffolds at cell seeded locations (representing osteogenic differentiation) and strain energy densities in cells at cell substrate interface (representing cell migration) were observed as mechanical response parameters in this study. Comparison of these responses, as two critical factors for bone regeneration, between the trabecular bone and gyroid scaffold at different locations, is the overall goal of the study. This study reveals that the gyroid scaffold exhibits higher osteogenic differentiation and cell migration potential compared to the trabecular bone. However, the responses in the gyroid only mimic the trabecular bone in two out of nine positions. These findings can guide us in predicting the ideal cell seeded sites within a scaffold for better bone regeneration and in replicating a replaced bone condition by altering the physical parameters of a scaffold.


Asunto(s)
Regeneración Ósea , Hueso Esponjoso , Diferenciación Celular , Movimiento Celular , Osteoblastos , Osteogénesis , Andamios del Tejido , Regeneración Ósea/fisiología , Osteoblastos/fisiología , Osteoblastos/citología , Diferenciación Celular/fisiología , Andamios del Tejido/química , Movimiento Celular/fisiología , Hueso Esponjoso/fisiología , Osteogénesis/fisiología , Humanos , Porosidad , Modelos Biológicos , Estrés Mecánico
9.
J Biomech Eng ; 146(10)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668718

RESUMEN

Creating the optimal environment for effective and long term osseointegration is a heavily researched and sought-after design criteria for orthopedic implants. A validated multimaterial finite element (FE) model was developed to replicate and understand the results of an experimental in vivo push-out osseointegration model. The FE model results closely predicted global force (at 0.5 mm) and stiffness for the 50-90% porous implants with an r2 of 0.97 and 0.98, respectively. In addition, the FE global force at 0.5 mm showed a correlation to the maximum experimental forces with an r2 of 0.90. The highest porosity implants (80-90%) showed lower stiffnesses and more equitable load sharing but also failed at lower a global force level than the low porosity implants (50-70%). The lower strength of the high porosity implants caused premature plastic deformation of the implant itself during loading as well as significant deformations in the ingrown and surrounding bone, resulting in lower overall osseointegration strength, consistent with experimental measurements. The lower porosity implants showed a balance of sufficient bony ingrowth to support osseointegration strength coupled with implant mechanical properties to circumvent significant implant plasticity and collapse under the loading conditions. Together, the experimental and finite element modeling results support an optimal porosity in the range of 60-70% for maximizing osseointegration with current structure and loading.


Asunto(s)
Análisis de Elementos Finitos , Ensayo de Materiales , Oseointegración , Porosidad , Prótesis e Implantes , Fenómenos Mecánicos , Animales , Metales/química , Estrés Mecánico
10.
Macromol Rapid Commun ; 45(14): e2400093, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639102

RESUMEN

The formation of ABC triblock terpolymers through solution casting is still challenging. In this study, core-shell double gyroid network structures are fabricated via solution casting using poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) (F)-b-[poly(4-vinylpyridine) (P4VP) (P)]-b-[polystyrene (PS) (S)] (FPS) triblock terpolymers in N,N-dimethylformamide (DMF). Upon heat treatment, the polymer tends to form a sphere-in-lamellar structure at the F/S interface. Given the solubility properties of each component in DMF, it is anticipated that the effective volume fraction of F relative to P would increase in concentrated solutions and the effective volume fraction of S would decrease. The microphase-separated structure derived from the DMF solution consistently results in the formation of a network structure composed of a core-shell double gyroid, with F as the matrix, P as the shell, and S as the core, and their periodic lengths gradually increase to 110.8, 131.8, and 162.7 nm as increase molecular weights of PS blocks to 13.8, 20.7, and 28.8 kg mol-1. Based on the solubility properties of the polymer components highlighted in this study, the solvent selection strategy is broadly applicable to ABC triblock terpolymers featuring various polymer components, offering a more efficient avenue for fabricating core-shell double gyroid structures.


Asunto(s)
Polímeros , Solubilidad , Polímeros/química , Dimetilformamida/química , Polivinilos/química , Estructura Molecular , Poliestirenos/química , Solventes/química , Tamaño de la Partícula
11.
Materials (Basel) ; 17(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38473673

RESUMEN

This paper focuses on the analysis of the thermal properties of prototype insulation structures produced using SLS and SLA additive technologies. There is a noticeable lack of analysis in the scientific literature regarding the geometry of 3D-printed structures in terms of their thermal properties. The aim of this paper was to analyze printed samples of prototype thermal insulation composite structures and their potential for use in building applications. The research material consisted of closed and open cell foams of varying structural complexity. Increasing the complexity of the composite core structure resulted in a statistically significant decrease in the value of the thermal conductivity coefficient λ and the heat transfer coefficient U, and an increase in the thermal resistance Rc. The experimental results showed that the geometric structure of the air voids in the material is a key factor in regulating heat transfer. The control of porosity in materials produced by additive technology can be an effective tool for designing structures with high insulation efficiency. The best performance of the prototype materials produced by the SLS method was a three-layer cellular composite with a gyroid core structure. It was also shown that the four-layer gyroid structure panels with an outer layer of metallized polyethylene film produced using 3D SLA printing had the best thermal insulation. As a result, the analysis confirmed the possibility of producing energy-efficient insulation materials using 3D printing. These materials can be used successfully in construction and other industries. Further research will significantly improve the quality, accuracy, and speed of printing insulation materials, reduce the negative impact on the natural environment, and develop intelligent adaptive solutions.

12.
ACS Nano ; 18(13): 9443-9450, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466943

RESUMEN

Transitions between gyroid and diamond intercatenated double network phases occur in many types of soft matter, but to date, the structural pathway and the crystallographic relationships remain unclear. Slice and view scanning electron microscopy tomography of a diblock copolymer affords monitoring of the evolving shape of the intermaterial dividing surface, allowing structural characterization of both the majority and minority domains. Two trihedral malleable mesoatoms combine to form a single tetrahedral mesoatom in a volume additive manner while preserving network topology, as the types of loops, the number of mesoatoms in a loop, minority domain strut lengths, and directions that connect a given mesoatom to its neighbors evolve across a 150 nm wide transition zone (TZ). The [111]DD direction is coincident with the [110]DG direction so that the (111)DD and (110)DG planes define the boundaries of the TZ. Selection of the particular crystal orientations and direction and width of the transition zone is to minimize the cost of morphing the mesoatoms from one structure to the other, by maximizing like-block continuity and minimizing the variation of the surface curvature and thickness of the domains across the TZ. Such coherent continuity of the independent, intercatenated networks across the transition zone is critical for applications such as graded mechanical trusses where the pair of different networks are joined to provide different mechanical properties for adjacent grains or could serve as a nanoscale anode/cathode allowing super charging and discharging provided the networks are continuous and rigorously separate.

13.
Bioact Mater ; 37: 72-85, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523703

RESUMEN

Bone tissue engineering is the main method for repairing large segment bone defects. In this study, a layer of bioactive MgO nanoparticles was wrapped on the surface of spherical Zn powders, which allowed the MgO nanoparticles to be incorporated into 3D-printed Zn matrix and improved the biodegradation and biocompatibility of the Zn matrix. The results showed that porous pure Zn scaffolds and Zn/MgO scaffolds with skeletal-gyroid (G) model structure were successfully prepared by selective laser melting (SLM). The average porosity of two porous scaffolds was 59.3 and 60.0%, respectively. The pores were uniformly distributed with an average pore size of 558.6-569.3 µm. MgO nanoparticles regulated the corrosion rate of scaffolds, resulting in a more uniform corrosion degradation behavior of the Zn/MgO scaffolds in simulated body fluid solution. The degradation ratio of Zn/MgO composite scaffolds in vivo was increased compared to pure Zn scaffolds, reaching 15.6% at 12 weeks. The yield strength (10.8 ± 2.4 MPa) of the Zn/MgO composite scaffold was comparable to that of cancellous bone, and the antimicrobial rate were higher than 99%. The Zn/MgO composite scaffolds could better guide bone tissue regeneration in rat cranial bone repair experiments (completely filling the scaffolds at 12 weeks). Therefore, porous Zn/MgO scaffolds with G-model structure prepared with SLM are a promising biodegradable bone tissue engineering scaffold.

14.
Biomedicines ; 12(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38540222

RESUMEN

INTRODUCTION: Osteogenic and angiogenic properties of synthetic bone grafts play a crucial role in the restoration of bone defects. Angiogenesis is recognised for its support in bone regeneration, particularly in larger defects. The objective of this study is to evaluate the new bone formation and neovascularisation of a 3D-printed isosorbide-based novel CSMA-2 polymer in biomimetic gyroid structures. METHODS: The gyroid scaffolds were fabricated by 3D printing CSMA-2 polymers with different hydroxyapatite (HA) filler concentrations using the digital light processing (DLP) method. A small animal subcutaneous model and a rat calvaria critical-size defect model were performed to analyse tissue compatibility, angiogenesis, and new bone formation. RESULTS: The in vivo results showed good biocompatibility of the 3D-printed gyroid scaffolds with no visible prolonged inflammatory reaction. Blood vessels were found to infiltrate the pores from day 7 of the implantation. New bone formation was confirmed with positive MT staining and BMP-2 expression, particularly on scaffolds with 10% HA. Bone volume was significantly higher in the CSMA-2 10HA group compared to the sham control group. DISCUSSION AND CONCLUSIONS: The results of the subcutaneous model demonstrated a favourable tissue response, including angiogenesis and fibrous tissue, indicative of the early wound healing process. The results from the critical-size defect model showcased new bone formation, as confirmed by micro-CT imaging and immunohistochemistry. The combination of CSMA-2 as the 3D printing material and the gyroid as the 3D structure was found to support essential events in bone healing, specifically angiogenesis and osteogenesis.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38469869

RESUMEN

There is a significant need for models that can capture the mechanical behavior of complex porous lattice architectures produced by 3D printing. The free boundary effect is an experimentally observed behavior of lattice architectures including the gyroid triply periodic minimal surface where the number of unit cell repeats has been shown to influence the mechanical performance of the lattice. The purpose of this study is to use finite element modeling to investigate how architecture porosity, unit cell size, and sample size dictate mechanical behavior. Samples with varying porosity and increasing number of unit cells (relative to sample size) were modeled under an axial compressive load to determine the effective modulus. The finite element model captured the free boundary effect and captured experimental trends in the structure's modulus. The findings of this study show that samples with higher porosity are more susceptible to the impact of the free boundary effect and in some samples, the modulus can be 20% smaller in samples with smaller numbers of unit cell repeats within a given sample boundary. The outcomes from this study provide a deeper understanding of the gyroid structure and the implications of design choices including porosity, unit cell size, and overall sample size.

16.
J Mech Behav Biomed Mater ; 151: 106328, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38184929

RESUMEN

The objective of this study is to evaluate the mechanical properties and energy absorption characteristics of the gyroid, dual-lattice and spinodoid structures, as biomimetic lattices, through finite element analysis and experimental characterisation. As part of the study, gyroid and dual-lattice structures at 10% volume fraction were 3D-printed using an elastic resin, and mechanically tested under uniaxial compression. Computational models were calibrated to the observed experimental data and the response of higher volume fraction structures were simulated in an explicit finite element solver. Stress-strain data of groups of lattices at different volume fractions were studied and energy absorption parameters including total energy absorbed per unit volume, energy absorption efficiency and onset of densification strain were calculated. Also, the structures were characterized into bending-dominant and stretch-dominant structures, according to their nodal connectivity and Gibson-and-Ashby's law. The results of the study showed that the dual-lattice is capable of absorbing more energy at each volume fraction cohort. However, gyroid structures showed higher energy absorption efficiency and the onset of densification at higher strains. The spinodoid structure was found to be the poorest structure in terms of energy absorption, specifically at low volume fractions. Also, the results showed that the dual-lattice was a stretch dominated structure, while the gyroid structure was a bending dominated structure, which may be a reason that it is a better candidate for energy absorption applications.


Asunto(s)
Biomimética , Humanos , Análisis de Elementos Finitos , Fenómenos Físicos
17.
J Biomed Mater Res B Appl Biomater ; 112(1): e35337, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37795764

RESUMEN

In this study, multi-scale triply periodic minimal surface (TPMS) porous scaffolds with uniform and radial gradient distribution on pore size were printed based on the selective laser melting technology, and the influences of porosity, pore size and radial pore size distribution on compression mechanical properties, cell behavior, and bone regeneration behavior were analyzed. The results showed that the compression performance of the uniform porous scaffolds with high porosity was similar to that of cancellous bone of pig tibia, and the gradient porous scaffolds have higher elastic modulus and compressive toughness. After 4 days of cell culture, cells were distributed on the surface of scaffolds mostly, and the number of adherent cells was higher on the small pore size porous scaffolds; After 7 days, the area and density of cell proliferation on the scaffolds were improved; After 14 days, the cells on the small pore size scaffolds tended to migrate to adjacent pores. Animal implantation experiments showed that collagen fiber osteoid was intermittent on scaffolds with high porosity and large pore size, which was not conducive to bone formation. The appropriate pore size and porosity of bone regeneration were 792 um and 83%, respectively, and the regenerative ability of gradient pore size was better than that of uniform pore size. Our study explains the rules of TPMS gyroid structure parameters on compression performance, cell response and bone regeneration, and provides a reference value for the design of bone repair scaffolds for clinical orthopedics.


Asunto(s)
Hueso Esponjoso , Andamios del Tejido , Animales , Porcinos , Porosidad , Andamios del Tejido/química , Regeneración Ósea , Impresión Tridimensional , Ingeniería de Tejidos/métodos
18.
Small ; 20(14): e2307487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37985946

RESUMEN

By utilizing bicontinuous and nanoporous ordered nanonetworks, such as double gyroid (DG) and double diamond (DD), metamaterials with exceptional optical and mechanical properties can be fabricated through the templating synthesis of functional materials. However, the volume fraction range of DG in block copolymers is significantly narrow, making it unable to vary its porosity and surface-to-volume ratio. Here, the theoretically limited structural volume of the DG phase in coil-coil copolymers is overcome by enlarging the conformational asymmetry through the association of mesogens, providing fast access to achieving flexible structured materials of ultra-high porosities. The new materials design, dual-extractable nanocomposite, is created by incorporating a photodegradable block with a solvent-extractable mesogen (m) into an accepting block, resulting in a new hollow gyroid (HG) with the largely increased surface-to-volume ratio and porosity of 77 vol%. The lightweight HG exhibits a low refractive index of 1.11 and a very high specific reduced modulus, almost two times that of the typical negative gyroid (porosity≈53%) and three times that of the positive gyroid (porosity≈24%). This novel concept can significantly extend the DG phase window of block copolymers and the corresponding surface-to-volume ratio, being applicable for nanotemplate-synthesized nanomaterials with a great gain of mechanical, catalytic, and optoelectronic properties.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36790389

RESUMEN

The mechanical behaviour of a DMLS Ti-6Al-4V gyroid-based cellular structure (CS), with potential application in the fabrication of implants, was studied under compressive conditions. The influence of the CS volumetric fraction on the elastic modulus was experimentally evaluated in cubic and cylindrical samples. The experimental results showed that the selected parameters allowed approximating the mechanical behaviour of the CS to that of trabecular bone. Finite element analysis was employed to study the mechanical behaviour of the CS. The model presented a good approximation of the experimental results, being useful to predict the mechanical behaviour of the CS.


Asunto(s)
Aleaciones , Titanio , Porosidad , Titanio/química , Hueso Esponjoso , Estructuras Celulares
20.
Macromol Rapid Commun ; 45(8): e2300696, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160322

RESUMEN

Controlling the internal structure of block copolymer (BCP) particles has a significant influence on its functionalities. Here, a structure-controlling method is proposed to regulate the internal structure of BCP Janus colloidal particles using different surfactants. Different microphase separation processes take place in two connected halves of the Janus particles. An order-order transition between gyroid and lamellar phases is observed in polymeric colloids. The epitaxial growth during the structural transformation from gyroid to lamellar phase undergoes a two-layered rearrangement to accommodate the interdomain spacing mismatch between these two phases. This self-assembly behavior can be ascribed to the preferential wetting of BCP chains at the interface, which can change the chain conformation of different blocks. The Janus colloidal particles can further experience a reversible phase transition by restructuring the polymer particles under solvent vapor. It is anticipated that the new phase behavior found in Janus particles can not only enrich the self-assembly study of BCPs but also provide opportunities for various applications based on Janus particles with ordered structures.


Asunto(s)
Coloides , Polímeros , Coloides/química , Polímeros/química , Tamaño de la Partícula , Propiedades de Superficie , Tensoactivos/química , Transición de Fase , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA