Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246247

RESUMEN

The successful utilization of stable carbon isotope approaches in investigating forest carbon dynamics has relied on the assumption that the carbon isotope compositions (δ13C) therein have detectable temporal variations. However, interpreting the δ13C signal transfer can be challenging, given the complexities involved in disentangling the effect of a single environmental factor, the isotopic dilution effect from background CO2, and the lack of high-resolution δ13C measurements. In this study, we conducted continuous in-situ monitoring of atmospheric CO2 (δ13Ca) across a canopy profile in an old-growth temperate forest in northeast China during the normal year 2020 and the wet year 2021. Both years exhibited similar temperature conditions in terms of both seasonal variations and annual averages. We tracked the natural carbon isotope composition from δ13Ca to photosynthate (δ13Cp) and to ecosystem respiration (δ13CReco). We observed significant differences in δ13Ca between the two years. Contrary to in 2020, in 2021 there was a δ13Ca valley in the middle of the growing season, attributed to surges in soil CO2 efflux induced by precipitation, while in 2020 values peaked during that period. Despite substantial and similar seasonal variations in canopy photosynthetic discrimination (Δ13Ccanopy) in the two years, the variability of δ13Cp in 2021 was significantly lower than in 2020, due to corresponding differences in δ13Ca. Furthermore, unlike in 2020, we found almost no changes in δ13CReco in 2021, which we ascribed to the imprint of the δ13Cp signal on above-ground respiration and, more importantly, to the contribution of stable δ13C signals from soil heterotrophic respired CO2. Our findings suggest that extreme precipitation can impede the detectability of recent photosynthetic δ13C signals in ecosystem respiration in forests, thus complicating the interpretation of above- and below-ground carbon linkage using δ13CReco. This study provides new insights for unravelling precipitation-related variations in forest carbon dynamics using stable isotope techniques.

2.
Sci Total Environ ; 950: 175116, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39084387

RESUMEN

Many evidences have shown that both atmospheric and soil droughts can constrain vegetation growth and further threaten its ability to sequester carbon. However, the trigger thresholds of vegetation production loss under different atmospheric and soil drought conditions are still unknown. In this study, we proposed a Copula and Bayesian equations-based framework to investigate trigger thresholds of various vegetation production losses under different atmospheric and soil drought conditions. The trigger thresholds dynamics and their possible causes were also investigated. To achieve this goal, we first simulated the gross primary production, soil moisture, and vapor pressure deficit over China during 1961-2018 using an individual-based, spatially explicit dynamic global vegetation model. The main drivers of the dynamic change in trigger thresholds were then explored by Random Forest model. We found that soil drought caused greater stress on gross primary production loss than atmospheric drought, with a larger impact area and higher probability of damage. In terms of spatial distribution, the risk probability of gross primary production loss was higher in eastern China than in western China, and the drought trigger threshold was also smaller in eastern China. In addition, the trigger thresholds for atmospheric and soil drought in most regions exhibited a decreasing trend from 1961 to 2018, while the CO2 fertilization enhanced the drought tolerance of vegetation. The reduction in CO2 fertilization effect slowed down the downward trend of trigger threshold for soil drought, while the increase in temperature exacerbated the downward trend of trigger threshold for atmospheric drought. This study highlighted the larger effect of soil drought on vegetation production loss than atmospheric drought and implied that climate change can modulate the trigger threshold of vegetation production losses under drought conditions. These findings provide scientific guidance for managing the increasing risk of drought on vegetation and optimizing watershed water allocation.


Asunto(s)
Atmósfera , Cambio Climático , Sequías , Suelo , China , Suelo/química , Atmósfera/química , Desarrollo de la Planta , Teorema de Bayes , Secuestro de Carbono
3.
J Environ Manage ; 366: 121696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013313

RESUMEN

The dune ecosystem plays a significant role in the global carbon cycle. The Horqin Sandy Land is a typical semi-arid fragile ecosystem in northern China. Understanding the magnitudes and dynamics of carbon dioxide fluxes within this region is essential for understanding the carbon balance. Used 6 years (2013-2018) measurements from an eddy-covariance system, we analyzed the dynamic patterns of net ecosystem carbon exchange (NEE), gross primary production (GPP), and ecosystem respiration (Reco) of the dune ecosystem in Horqin Sandy Land and examined their responses to climate factors with a focus on the precipitation. The results showed that the NEE of the dune ecosystem fluctuated from -166 to 100 gCO2·m-2·year-1 across the 6 growing seasons, with an average of -56 gCO2·m-2·year-1. The precipitation was not a key factor influencing the carbon flux variability. During the mid-growth stage, GPP was primarily affected by the effective precipitation frequency (R2 ranging from 0.65 to 0.85, P < 0.05), followed by fractional vegetation cover (R2 ranging from 0.65 to 0.68, P < 0.05). However, in the early and late growth stages, temperature predominantly drove the carbon flux (R2 = 0.75, P < 0.01). The interannual variability of carbon flux can be predominantly elucidated by phenological indicators such as CO2 uptake (CUstart), end of CO2 uptake (CUend), CO2 uptake period (CUP), and Spring lag. The results demonstrated the dune ecosystem is a weak carbon sink in semi-arid ecosystems. Furthermore, we emphasized the significance of effective precipitation frequency in regulating carbon fluxes. Our results provide a foundational understanding of the carbon balance in semi-arid ecosystems.


Asunto(s)
Ciclo del Carbono , Carbono , Ecosistema , China , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Estaciones del Año
4.
Sci Total Environ ; 948: 174938, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047829

RESUMEN

Recent climate warming has significantly affected the sensitivity of Gross Primary Productivity (GPP) to precipitation within China's agricultural ecosystems. Nonetheless, the spatial and temporal nonlinear evolution patterns of GPP-precipitation sensitivity under climate change, as well as the underlying drivers and long-term trends of this sensitivity, are not well understood. This study employs correlation analysis to quantify the sensitivity between GPP and precipitation in China's agricultural ecosystems, and utilizes nonlinear detection algorithms to examine the long-term changes in this sensitivity. Advanced machine learning techniques and frameworks are subsequently applied to analyze the driving factors of GPP-precipitation sensitivity in China's agricultural ecosystems. The findings reveal that approximately 49.00 % of the analyzed pixels exhibit a significant positive correlation between GPP and precipitation. Nonlinear change analysis indicates spatial heterogeneity in GPP-precipitation sensitivity across China's agricultural ecosystems, with patterns showing initial increases followed by decreases accounting for 25.12 %, and patterns of initial decreases followed by increases at 13.27 %. Machine learning analysis identifies temperature, soil moisture, and crop water footprint as the primary factors influencing GPP-precipitation sensitivity in agricultural ecosystems. This study is the first to introduce crop water footprint as a significant factor in the analysis of GPP-precipitation sensitivity. It not only offers new insights into the temporal nonlinear changes and driving factors of GPP-precipitation sensitivity but also underscores the importance of enhancing agricultural water efficiency to maintain agricultural ecosystem health and ensure food security under climate change.

5.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38864558

RESUMEN

Carbon dioxide sequestration from the atmosphere is commonly assessed using the eddy covariance method. Its net flux signal can be decomposed into gross primary production and ecosystem respiration components, but these have seldom been tested against independent methods. In addition, eddy covariance lacks the ability to partition carbon sequestration among individual trees or species within mixed forests. Therefore, we compared gross primary production from eddy covariance versus an independent method based on sap flow and water-use efficiency, as measured by the tissue heat balance method and δ13C of phloem contents, respectively. The latter measurements were conducted on individual trees throughout a growing season in a mixed broadleaf forest dominated by three tree species, namely English oak, narrow-leaved ash and common hornbeam (Quercus robur L., Fraxinus angustifolia Vahl, and Carpinus betulus L., respectively). In this context, we applied an alternative ecophysiological method aimed at verifying the accuracy of a state-of-the-art eddy covariance system while also offering a solution to the partitioning problem. We observed strong agreement in the ecosystem gross primary production estimates (R2 = 0.56; P < 0.0001), with correlation being especially high and nearly on the 1:1 line in the period before the end of July (R2 = 0.85; P < 0.0001). After this period, the estimates of gross primary production began to diverge. Possible reasons for the divergence are discussed, focusing especially on phenology and the limitation of the isotopic data. English oak showed the highest per-tree daily photosynthetic rates among tree species, but the smaller, more abundant common hornbeam contributed most to the stand-level summation, especially early in the spring. These findings provide a rigorous test of the methods and the species-level photosynthesis offers avenues for enhancing forest management aimed at carbon sequestration.


Asunto(s)
Bosques , Fotosíntesis , Árboles , Fotosíntesis/fisiología , Árboles/fisiología , Quercus/fisiología , Quercus/metabolismo , Secuestro de Carbono , Fraxinus/fisiología , Fraxinus/metabolismo
6.
Environ Res ; 252(Pt 4): 119063, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740292

RESUMEN

The high uncertainty regarding global gross primary production (GPP) remains unresolved. This study explored the relationships between phenology, physiology, and annual GPP to provide viable alternatives for accurate estimation. A statistical model of integrated phenology and physiology (SMIPP) was developed using GPP data from 145 FLUXNET sites to estimate the annual GPP for various vegetation types. By employing the SMIPP model driven by satellite-derived datasets of the global carbon uptake period (CUP) and maximal carbon uptake capacity (GPPmax), the global annual GPP was estimated for the period from 2001 to 2018. The results demonstrated that the SMIPP model accurately predicted annual GPP, with relative root mean square error values ranging from 11.20 to 19.29% for forest types and 20.49-35.71% for non-forest types. However, wetlands, shrublands, and evergreen forests exhibited relatively low accuracies. The average, trend, and interannual variation of global GPP during 2001-2018 were 132.6 Pg C yr-1, 0.25 Pg C yr-2, and 1.57 Pg C yr-1, respectively. They were within the ranges estimated in other global GPP products. Sensitivity analysis revealed that GPPmax had comparable effects to CUP in high-latitude regions but significantly greater impacts at the global scale, with sensitivity coefficients of 0.85 ± 0.23 for GPPmax and 0.46 ± 0.28 for CUP. This study provides a simple and practical method for estimating global annual GPP and highlights the influence of GPPmax and CUP on global-scale annual GPP.


Asunto(s)
Carbono , Carbono/metabolismo , Carbono/análisis , Bosques , Estaciones del Año , Ciclo del Carbono
7.
J Environ Manage ; 360: 121185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788407

RESUMEN

Chlorophyll fluorescence is the long-wave light released by the residual energy absorbed by vegetation after photosynthesis and dissipation, which can directly and non-destructively reflect the photosynthetic state of plants from the perspective of the mechanism of photosynthetic process. Moso bamboo has a substantial carbon sequestration ability, and leaf-expansion stage is an important phenological period for carbon sequestration. Gross primary production (GPP) is a key parameter reflecting vegetation carbon sequestration process. However, the ability of chlorophyll fluorescence in moso bamboo to explain GPP changes is unclear. The research area of this study is located in the bamboo forest near the flux station of Anji County, Zhejiang Province, where an observation tower is built to monitor the carbon flux and meteorological change of bamboo forest. The chlorophyll fluorescence physiological parameters (Fp) and fluorescence yield (Fy) indices were measured and calculated for the leaves of newborn moso bamboo (I Du bamboo) and the old leaves of 4- to 5-year-old moso bamboo (Ⅲ Du bamboo) during the leaf-expansion stage. The chlorophyll fluorescence in response to the environment and its effect on carbon flux were analyzed. The results showed that: Fv/Fm, Y(II) and α of Ⅰ Du bamboo gradually increased, while Ⅲ Du bamboo gradually decreased, and FYint and FY687/FY738 of Ⅰ Du bamboo were higher than those of Ⅲ Du bamboo; moso bamboo was sensitive to changes in air temperature(Ta), relative humidity(RH), water vapor pressure(E), soil temperature(ST) and soil water content (SWC), the Fy indices of the upper, middle and lower layers were significantly correlated with Ta, E and ST; single or multiple vegetation indices were able to estimate the fluorescence yield indices well (all with R2 greater than 0.77); chlorophyll fluorescence (Fp and Fy indices) of Ⅰ Du bamboo and Ⅲ Du bamboo could explain 74.4% and 72.7% of the GPP variation, respectively; chlorophyll fluorescence and normalized differential vegetation index of the canopy (NDVIc) could estimate GPP well using random forest (Ⅰ Du bamboo: r = 0.929, RMSE = 0.069 g C·m-2; Ⅲ Du bamboo: r = 0.899, RMSE = 0.134 g C·m-2). The results of this study show that chlorophyll fluorescence can provide a basis for judging the response of moso bamboo to environmental changes and can well explain GPP. This study has important scientific significance for evaluating the potential mechanisms of growth, stress feedback and photosynthetic carbon sequestration of bamboo.


Asunto(s)
Clorofila , Fotosíntesis , Hojas de la Planta , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Fluorescencia , Poaceae/metabolismo , Poaceae/crecimiento & desarrollo , Secuestro de Carbono , Carbono/metabolismo
8.
J Environ Manage ; 356: 120740, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520853

RESUMEN

Stomatal conductance (gs) and compensatory water uptake (CWU) are crucial processes in land surface models, as they directly influence the exchange of carbon and water fluxes between terrestrial ecosystems and the atmosphere. In this study, we integrated a new stomatal scheme derived from optimal stomatal theory (Medlyn's gs model), and an empirical CWU scheme into the Common Land Model (CoLM). Assessing the impacts on modeling gross primary productivity (GPP) and latent flux (LE) through observations obtained from eddy covariance (EC) measurements at three forest sites in China. Our results show that replacing the Ball-Berry's gs model (termed BB) with Medlyn's gs model (termed MED) did not bring about significant changes (had neutral impacts) in the performance of CoLM simulations at three forest sites. Considering the climate factors of annual mean precipitation to optimize key fitting parameters in gs exhibited improvement in model simulations. The average coefficient of determination (R2) achieved to 0.65 for GPP and LE at three sites, and the normalized root mean squared error (NRMSE) decreased from 0.83 to 0.77 at those sites. Besides, incorporating CWU into the model improved its performance. The R2 increased to 0.84 and RMSE decreased to 4.84 µmol m-2 s-1 for GPP, and the R2 increased to 0.62 and RMSE decreased to 55.64 W m-2 for LE. Therefore, modifying the model process of both contributed more to enhancing the model simulations than relying solely on one of these functions. Our study highlights that the response of plant functional types (PFTs) to water stress can be effectively represented in gs models when coupled with biochemical capacity to quantify carbon and water fluxes in forest ecosystems or other ecosystems.


Asunto(s)
Carbono , Ecosistema , Bosques , Plantas , China , Ciclo del Carbono
9.
Sci Total Environ ; 917: 170532, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38296104

RESUMEN

Semi-arid ecosystems have been shown to dominate over tropical forests in determining the trend and interannual variability of land carbon (C) sink. However, the magnitude and variability of ecosystem C balance remain largely uncertain for temperate semi-arid shrublands at the decadal scale. Using eddy-covariance and micro-meteorological measurements, we quantified the interannual variation in net ecosystem production (NEP) and its components, gross primary production (GPP) and ecosystem respiration (Reco, i.e., the sum of autotrophic and heterotrophic respiration), in a semi-arid shrubland of the Mu Us Desert, northern China during 2012-2022. This shrubland was an overall weak C sink over the 11 years (NEP = 12 ± 46 g C m-2 yr-1, mean ± SD). Annual NEP ranged from -66 to 77 g C m-2 yr-1, with the ecosystem frequently switching between being an annual C sink and a C source. GPP was twice as sensitive as Reco to prolonged dry seasons, leading to a close negative relationship between annual NEP and dry-season length (R2 = 0.80, P < 0.01). Annual GPP (R2 = 0.51, P = 0.01) and NEP (R2 = 0.58, P < 0.01) were positively correlated with annual rainfall. Negative annual NEP (the ecosystem being a C source) tended to occur when the dry season exceeded 50 d yr-1 or rainfall dropped below 280 mm yr-1. Increases in dry-season length strengthened the effects of low soil moisture relative to high vapor pressure deficit in constraining NEP. Both GPP and NEP were more closely correlated with C uptake amplitude (annual maximum daily values) than with C uptake period. These findings indicate that dry-season extension under climate change may reduce the long-term C sequestration in semi-arid shrublands. Plant species adapted to prolonged dry seasons should be used in ecosystem restoration in the studied area to enhance ecosystem functions.

10.
Sci Total Environ ; 917: 170439, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281630

RESUMEN

Gross primary production (GPP) is a critical component of the global carbon cycle and plays a significant role in the terrestrial carbon budget. The impact of environmental factors on GPP can occur through both direct (by influencing photosynthetic efficiency) and indirect (through the modulation of vegetation structure) pathways, but the extent to which these mechanisms contribute has been seldom quantified. In this study, we used structural equation modeling and observations from the FLUXNET network to investigate the direct and indirect effects of environmental factors on terrestrial ecosystem GPP at multiple temporal scales. We found that canopy structure, represented by leaf area index (LAI), is a crucial intermediate factor in the GPP response to environmental drivers. Environmental factors affect GPP indirectly by altering canopy structure, and the relative proportion of indirect effects decreased with increasing LAI. The study also identified different effects of environmental factors on GPP across time scales. At the half-hourly time scale, radiation was the primary driver of GPP. In contrast, the influences of temperature and vapor pressure deficit took on greater prominence at longer time scales. About half of the total effect of temperature on GPP was indirect through the regulation of canopy structure, and the indirect effect increased with increasing time scale (GPPNT-based models: 0.135 (half-hourly) vs. 0.171 (daily) vs. 0.189 (weekly) vs. 0.217 (monthly); GPPDT-based models: 0.139 vs. 0.170 vs. 0.187 vs. 0.215; all values were reported in gC m-2 d-1 °C-1, P < 0.001); while the indirect effect of radiation on GPP was comparatively lower, accounting for less than a quarter of the total effect. Furthermore, we observed a direct, negative-to-positive impact of precipitation on GPP across timescales. These findings provide crucial information on the interplay between environmental factors and LAI on GPP and enable a deeper understanding of the driving mechanisms of GPP.


Asunto(s)
Ecosistema , Fotosíntesis , Estaciones del Año , Temperatura , Ciclo del Carbono
11.
Glob Chang Biol ; 29(23): 6794-6811, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37731366

RESUMEN

Understanding the controlling mechanisms of soil properties on ecosystem productivity is essential for sustaining productivity and increasing resilience under a changing climate. Here we investigate the control of topsoil depth (e.g., A horizons) on long-term ecosystem productivity. We used nationwide observations (n = 2401) of topsoil depth and multiple scaled datasets of gross primary productivity (GPP) for five ecosystems (cropland, forest, grassland, pasture, shrubland) over 36 years (1986-2021) across the conterminous USA. The relationship between topsoil depth and GPP is primarily associated with water availability, which is particularly significant in arid regions under grassland, shrubland, and cropland (r = .37, .32, .15, respectively, p < .0001). For every 10 cm increase in topsoil depth, the GPP increased by 114 to 128 g C m-2 year-1 in arid regions (r = .33 and .45, p < .0001). Paired comparison of relatively shallow and deep topsoils while holding other variables (climate, vegetation, parent material, soil type) constant showed that the positive control of topsoil depth on GPP occurred primarily in cropland (0.73, confidence interval of 0.57-0.84) and shrubland (0.75, confidence interval of 0.40-0.94). The GPP difference between deep and shallow topsoils was small and not statistically significant. Despite the positive control of topsoil depth on productivity in arid regions, its contribution (coefficients: .09-.33) was similar to that of heat (coefficients: .06-.39) but less than that of water (coefficients: .07-.87). The resilience of ecosystem productivity to climate extremes varied in different ecosystems and climatic regions. Deeper topsoils increased stability and decreased the variability of GPP under climate extremes in most ecosystems, especially in shrubland and grassland. The conservation of topsoil in arid regions and improvements of soil depth representation and moisture-retention mechanisms are critical for carbon-sequestration ecosystem services under a changing climate. These findings and relationships should also be included in Earth system models.


Asunto(s)
Ecosistema , Pradera , Clima Desértico , Suelo , Agua
12.
Sci Total Environ ; 905: 167090, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37716675

RESUMEN

Understanding the sensitivity of vegetation growth and greenness to vegetation water content change is crucial for elucidating the mechanism of terrestrial ecosystems response to water availability change caused by climate change. Nevertheless, we still have limited knowledge of such aspects in urban in different climatic contexts under the influence of human activities. In this study, we employed Google Earth Engine (GEE), remote sensing satellite imagery, meteorological data, and Vegetation Photosynthesis Model (VPM) to explore the spatiotemporal pattern of vegetation growth and greenness sensitivity to vegetation water content in three megacities (Beijing, Shanghai, and Guangzhou) located in eastern China from 2001 to 2020. We found a significant increase (slope > 0, p < 0.05) in the sensitivity of urban vegetation growth and greenness to vegetation water content (SLSWI). This indicates the increasing dependence of urban vegetation ecosystems on vegetation water resources. Moreover, evident spatial heterogeneity was observed in both SLSWI and the trends of SLSWI, and spatial heterogeneity in SLSWI and the trends of SLSWI was also present among identical vegetation types within the same city. Additionally, both SLSWI of vegetation growth and greenness and the trend of SLSWI showed obvious spatial distribution differences (e.g., standard deviations of trends in SLSWI of open evergreen needle-leaved forest of GPP is 14.36 × 10-2 and standard deviations of trends in SLSWI of open evergreen needle-leaved forest of EVI is 10.16 × 10-2), closely associated with factors such as vegetation type, climatic conditions, and anthropogenic influences.


Asunto(s)
Ecosistema , Agua , Humanos , Ciudades , China , Bosques
13.
Sci Total Environ ; 903: 166149, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567315

RESUMEN

Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.

14.
Sci Total Environ ; 899: 165686, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37482354

RESUMEN

The frequency and severity of hot drought will increase in the future due to impact of climate change and human activities, threatening the sustainability of terrestrial ecosystems and human societies. Hot drought is a typical type of drought event, high vapor pressure deficit (VPD) and low soil moisture (SM) are its main characteristics of hot drought, with increasing water stress on vegetation and exacerbating hydrological drought and ecosystem risks. However, our understanding of the effects of high VPD and low SM on vegetation productivity is limited, because these two variables are strongly coupled and influenced by other climatic drivers. The southwestern United States experienced one of the most severe hot drought events on record in 2020. In this study, we used SM and gross primary productivity (GPP) datasets from Soil Moisture Active and Passive (SMAP), as well as VPD and other meteorological datasets from gridMET. We decoupled the effects of different meteorological factors on GPP at monthly and daily scales using partial correlation analysis, partial least squares regression, and binning methods. We found that SM anomalies contribute more to GPP anomalies than VPD anomalies at monthly and daily scales. Especially at the daily scale, as the decoupled SM anomalies increased, the GPP anomalies increased. However, there is no significant change in GPP anomalies as VPD increases. For all the vegetation types and arid zones, SM dominated the variation in GPP, followed by VPD or maximum temperature. At the flux tower scale, decoupled soil water content (SWC) also dominated changes in GPP, compared to VPD. In the next century, hot drought will occur frequently in dryland regions, where GPP is one of the highest uncertainties in terrestrial ecosystems. Our study has important implications for identifying the strong coupling of meteorological factors and their impact on vegetation under climate change.

15.
Plant Environ Interact ; 4(3): 163-174, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37362422

RESUMEN

Understanding productivity in agricultural ecosystems is important, as it plays a significant role in modifying regional carbon balances and capturing carbon in the form of agricultural yield. This study in particular combines information from flux determinations using the eddy covariance (EC) methodology, process-based modeling of carbon gain, remotely (satellite) sensed vegetation indices (VIs), and field surveys to assess the gross primary production (GPP) of rice, which is a primary food crop worldwide. This study relates two major variables determining GPP. The first is leaf area index (LAI) and carboxylation capacity of the rice canopy (Vcuptake), and the second being MODIS remotely sensed vegetation indices (VIs). Success in applying such derived relationships has allowed GPP to be remotely determined over the seasonal course of rice development. The relationship to VIs of both LAI and Vcuptake was analyzed first by using the regression approaches commonly applied in remote sensing studies. However, the resultant GPP estimations derived from these generic models were not consistently accurate and led to a large proportion of underestimations. The new, alternative approach developed to estimate LAI and Vcuptake uses consistent development curves for rice (i.e., relies on consistent biological regulations of plant development). The modeled GPP based on this consistent development curve for both LAI and Vcuptake agreed with R 2 from 0.76 to 0.92 (within the 95% confidence interval). The results of this study demonstrate that improved linkages between ground-based survey data, eddy flux measurements, process-based models, and remote sensing data can be constructed to estimate GPP in rice paddies. This study suggests further that the conceptual application of the consistent development curve, such as the combining of different scale measurements, has the potential to predict GPP better than the common practice of utilizing simple linear models, when seeking to estimate the critical parameters that influence carbon gain and agricultural yields.

16.
Environ Res ; 231(Pt 1): 116118, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182826

RESUMEN

The phenomenon of subsurface chlorophyll maximum (SCM) layer emerging at a certain water depth is commonly found in stratified water bodies. Also, it is a crucial contributing region to the primary productivity of the water column. Currently, there is a lack of concern about the occurrence of SCM phenomena in studies targeting inland water bodies such as natural lakes and artificial reservoirs. This led to a significant underestimation of the level of primary productivity in these water bodies and their trophic state. In this study, a subtropical reservoir (the Xinanjiang Reservoir, XAJR) was investigated, to understand the characteristics of SCM layer in deep-large reservoir and its contribution to the primary productivity of the water column. Water sampling were conducted from September 2020 to August 2021, and in September 2022. Buoy station data for this reservoir between 2019 and 2021 were also collected. Based on the detailed observations of the water column profile in riverine area (X1), transitional area (X2), and central area (X3 and X4) of this reservoir, it was found that there was an obvious SCM phenomenon, which was closely related to the characteristics of seasonal thermal stratification. The SCM layer of XAJR appeared at depth around 3-5 m underwater from May to August, and as the thermal stratification strength increased, so did the depth and thickness of the SCM layer. It was estimated that gross primary productivity of euphotic layer of XAJR ranged from 347.9 to 4508.6 mgC·m-2·d-1. The average primary productivity level of the SCM layer reached 1411.7mgC·m-2·d-1, accounting for about 40-90% of the gross primary productivity of euphotic layer. This study contributes to a better understanding of the factors influencing changes in the development of the SCM layer in large reservoirs, as well as its critical role in the inland water carbon cycle.


Asunto(s)
Clorofila , Agua , Clorofila/análisis , Monitoreo del Ambiente , Estaciones del Año , Calidad del Agua , China
17.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1341-1348, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236952

RESUMEN

Changbai Mountain Nature Reserve (CNR) is a typical temperate forest ecosystem, and gross primary production (GPP) of which is closely related to topography and climate change. Research on the spatio-temporal variations and influencing factors of GPP in the CNR is of great significance for assessing growth status of vegetation and the quality of ecological environment. We calculated GPP in CNR using the vegetation photosynthesis model (VPM), and analyzed the influences of slope, altitude, temperature, precipitation, and total radiation. The results showed that the range of annual average GPP in CNR was 63-1706 g C·m-2·a-1 from 2000 to 2020 and that GPP decreased with the increases of altitude. Temperature played the most important role in driving the spatial varia-tion of GPP, with a significant positive correlation with GPP. During the study period, the overall annual GPP showed a significant increase trend in CNR, with an average annual increase of 13 g C·m-2·a-1. The areas with increase of annual GPP accounted for 79.9% of the total area, and the area proportion of annual GPP increase differed in each plant functional type. Annual precipitation was significantly negatively correlated with GPP in 43.2% of CNR, while annual mean temperature and annual total radiation were significantly positively correlated with GPP in 47.2% and 82.4% of CNR. GPP would increase continuously in CNR under the scenario of future global warming.


Asunto(s)
Ecosistema , Bosques , China , Cambio Climático , Calentamiento Global
18.
Glob Chang Biol ; 29(13): 3634-3651, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37070967

RESUMEN

The increasing frequency and intensity of climate extremes and complex ecosystem responses motivate the need for integrated observational studies at low latency to determine biosphere responses and carbon-climate feedbacks. Here, we develop a satellite-based rapid attribution workflow and demonstrate its use at a 1-2-month latency to attribute drivers of the carbon cycle feedbacks during the 2020-2021 Western US drought and heatwave. In the first half of 2021, concurrent negative photosynthesis anomalies and large positive column CO2 anomalies were detected with satellites. Using a simple atmospheric mass balance approach, we estimate a surface carbon efflux anomaly of 132 TgC in June 2021, a magnitude corroborated independently with a dynamic global vegetation model. Integrated satellite observations of hydrologic processes, representing the soil-plant-atmosphere continuum (SPAC), show that these surface carbon flux anomalies are largely due to substantial reductions in photosynthesis because of a spatially widespread moisture-deficit propagation through the SPAC between 2020 and 2021. A causal model indicates deep soil moisture stores partially drove photosynthesis, maintaining its values in 2020 and driving its declines throughout 2021. The causal model also suggests legacy effects may have amplified photosynthesis deficits in 2021 beyond the direct effects of environmental forcing. The integrated, observation framework presented here provides a valuable first assessment of a biosphere extreme response and an independent testbed for improving drought propagation and mechanisms in models. The rapid identification of extreme carbon anomalies and hotspots can also aid mitigation and adaptation decisions.


Asunto(s)
Sequías , Ecosistema , Atmósfera , Ciclo del Carbono , Suelo , Plantas , Carbono , Cambio Climático
19.
Sci Total Environ ; 882: 163395, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37044335

RESUMEN

Rewetting previously drained peatlands restores the critical function of peatlands as long-term carbon storages and sinks currently threatened by climate change and additional human-induced disturbances. Understanding and projecting the restoration process by rewetting, however, currently face a pressing challenge, the lack of consistent and gap-free records of important carbon cycling indicators of peatlands such as the gross primary production (GPP) over long term. In this study, we reconstructed the GPP in a rewetted peatland called Zarnekow (Fluxnet-ID: DE-Zrk) in Germany from 2000 to 2020 by combining long-term satellite observations and limited-term tower-based eddy covariance (EC) measurements based on Random Forest regression models. The R2 between the reconstructed data and EC data was 0.6. The reasonable reconstruction of long-term GPP enabled trend analysis that identified two distinct periods of decreasing/increasing in GPP due to rewetting and droughts. Rewetting in the winter of 2004 and 2005 stabilized GPP after a decreasing period. A drought in 2018 significantly increased GPP, and GPP remained high over the following two years. Furthermore, the month-specific trends show significant seasonality at this site, specifically, an increasing trend over the 21 years in the growing-season months of June to August and a decreasing trend in the other months. The most important variables for satellite-based estimates of GPP at this site include total evapotranspiration, land surface temperature, enhanced vegetation index and near-infrared reflectance vegetation index. Long-term analyses of carbon fluxes through the combination of satellite observations and EC measurements provide crucial insights into the restoration of carbon sequestration functions in rewetted peatlands.

20.
Sci Total Environ ; 875: 162601, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36882141

RESUMEN

Accurate modeling of Gross Primary Productivity (GPP) in terrestrial ecosystems is a major challenge in quantifying the carbon cycle. Many light use efficiency (LUE) models have been developed, but the variables and algorithms used for environmental constraints in different models vary importantly. It is still unclear whether the models can be further improved by machine learning methods and the combination of different variables. Here, we have developed a series of RFR-LUE models, which used the random forest regression (RFR) algorithm based on variables of LUE models, to explore the potential of estimating site-level GPP. Based on remote sensing indices, eddy covariance and meteorological data, we applied RFR-LUE models to evaluate the effects of different variables combined on GPP on daily, 8-day, 16-day and monthly scales, respectively. Cross-validation analyses revealed performances of RFR-LUE models varied significantly among sites with R2 of 0.52-0.97. Slopes of the regression relationship between simulated and observed GPP ranged from 0.59 to 0.95. Most models performed better in capturing the temporal changes and magnitude of GPP in mixed forests and evergreen needle-leaf forests than in evergreen broadleaf forests and grasslands. Performances were improved at the longer temporal scale, with the average R2 for four-time resolutions of 0.81, 0.87, 0.88, and 0.90, respectively. Additionally, the importance of the variables showed that temperature and vegetation indices were critical variables for RFR-LUE models, followed by radiation and moisture variables. The importance of moisture variables was higher in non-forests than in forests. A comparison with four GPP products indicated that RFR-LUE model predicted GPP better matcher observed GPP across sites. The study provided an approach to deriving GPP fluxes and evaluating the extent to which variables affect GPP estimation. It may be used for predicting vegetation GPP at the regional scales and for calibration and evaluation of land surface process models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA