Your browser doesn't support javascript.
loading
An optimal ensemble of the CoLM for simulating the carbon and water fluxes over typical forests in China.
Li, Yuzhen; Yuan, Xiuliang; Zhuang, Qingwei.
Afiliación
  • Li Y; School of Emergency Management, Xihua University, Chengdu 610039, China.
  • Yuan X; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China. Electronic address: yuanxiuliang@ms.xjb.ac.cn.
  • Zhuang Q; State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China.
J Environ Manage ; 356: 120740, 2024 Apr.
Article en En | MEDLINE | ID: mdl-38520853
ABSTRACT
Stomatal conductance (gs) and compensatory water uptake (CWU) are crucial processes in land surface models, as they directly influence the exchange of carbon and water fluxes between terrestrial ecosystems and the atmosphere. In this study, we integrated a new stomatal scheme derived from optimal stomatal theory (Medlyn's gs model), and an empirical CWU scheme into the Common Land Model (CoLM). Assessing the impacts on modeling gross primary productivity (GPP) and latent flux (LE) through observations obtained from eddy covariance (EC) measurements at three forest sites in China. Our results show that replacing the Ball-Berry's gs model (termed BB) with Medlyn's gs model (termed MED) did not bring about significant changes (had neutral impacts) in the performance of CoLM simulations at three forest sites. Considering the climate factors of annual mean precipitation to optimize key fitting parameters in gs exhibited improvement in model simulations. The average coefficient of determination (R2) achieved to 0.65 for GPP and LE at three sites, and the normalized root mean squared error (NRMSE) decreased from 0.83 to 0.77 at those sites. Besides, incorporating CWU into the model improved its performance. The R2 increased to 0.84 and RMSE decreased to 4.84 µmol m-2 s-1 for GPP, and the R2 increased to 0.62 and RMSE decreased to 55.64 W m-2 for LE. Therefore, modifying the model process of both contributed more to enhancing the model simulations than relying solely on one of these functions. Our study highlights that the response of plant functional types (PFTs) to water stress can be effectively represented in gs models when coupled with biochemical capacity to quantify carbon and water fluxes in forest ecosystems or other ecosystems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Ecosistema País/Región como asunto: Asia Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbono / Ecosistema País/Región como asunto: Asia Idioma: En Revista: J Environ Manage Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido