Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; : e2404822, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096107

RESUMEN

Selective photocatalytic CO2 reduction to high-value hydrocarbons using graphitic carbon nitride (g-C3N4) polymer holds great practical significance. Herein, the cyano-functionalized g-C3N4 (CN-g-C3N4) with a high local electron density site is successfully constructed for selective CO2 photoreduction to CH4 and C2H4. Wherein the potent electron-withdrawing cyano group induces a giant internal electric field in CN-g-C3N4, significantly boosting the directional migration of photogenerated electrons and concentrating them nearby. Thereby, a high local electron density site around its cyano group is created. Moreover, this structure can also effectively promote the adsorption and activation of CO2 while firmly anchoring *CO intermediates, facilitating their subsequent hydrogenation and coupling reactions. Consequently, using H2O as a reducing agent, CN-g-C3N4 achieves efficient and selective photocatalytic CO2 reduction to CH4 and C2H4 activity, with maximum rates of 6.64 and 1.35 µmol g-1 h-1, respectively, 69.3 and 53.8 times higher than bulk g-C3N4 and g-C3N4 nanosheets. In short, this work illustrates the importance of constructing a reduction site with high local electron density for efficient and selective CO2 photoreduction to hydrocarbons.

2.
Nano Lett ; 24(15): 4439-4446, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38498723

RESUMEN

Graphitic carbon nitrides (g-C3N4) as low-cost, chemically stable, and ecofriendly layered semiconductors have attracted rapidly growing interest in optoelectronics and photocatalysis. However, the nature of photoexcited carriers in g-C3N4 is still controversial, and an independent charge-carrier picture based on the band theory is commonly adopted. Here, by performing transient spectroscopy studies, we show characteristics of self-trapped excitons (STEs) in g-C3N4 nanosheets including broad trapped exciton-induced absorption, picosecond exciton trapping without saturation at high photoexcitation density, and transient STE-induced stimulated emissions. These features, together with the ultrafast exciton trapping polarization memory, strongly suggest that STEs intrinsically define the nature of the photoexcited states in g-C3N4. These observations provide new insights into the fundamental photophysics of carbon nitrides, which may enlighten novel designs to boost energy conversion efficiency.

3.
ACS Appl Mater Interfaces ; 16(1): 807-818, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38143306

RESUMEN

With effective utilization of the catalytic site, single-atom catalysts (SACs) supported by nitrogen atoms surrounding built-in pores of two-dimensional (2D) materials, such as porphyrin/phthalocyanine-based covalent organic frameworks, have been highly promising electrocatalysts in the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) processes for the air electrode of the metal-air battery. However, the number of stable single-atom anchoring sites, i.e., accessible single-atom metal sites, has been concerning as a result of the appearance of heterogeneous or large and even supersized pores in substrate materials. 2D porous graphitic carbon nitride (PGCN) with a stronger stability and smaller component is regarded as a more potential alternative owing to similar controllability and designability. In this work, inspired by the robust coordinated TM-N4 environment of porphyrin/phthalocyanine molecules, novel p-C2N with a high density of porphyrin-like organic units is rationally designed. In well-designed p-C2N, a higher homogeneity and uniformity of coordination sites can enhance the electrocatalytic activity in the whole catalytic material and better prevent SACs from sintering and agglomerating into thermodynamically stable nanoclusters. Utilizing density functional theory (DFT), the stability of the p-C2N monolayer, TM@p-C2N, and OER/ORR catalytic activities of TM@p-C2N (TM including Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au) are systematically evaluated. Among them, Ir@p-C2N (0.31 V of the OER and 0.36 V of the ORR), Co@p-C2N (0.47 and 0.22 V), and Rh@p-C2N (0.55 and 0.27 V) are screened as promising SACs for the bifunctional ORR and OER. The proposal of p-C2N guides a new direction for the development of TM-N-C-based SAC bifunctional electrocatalysts.

4.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241276

RESUMEN

Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising solar-light-activated polymeric metal-free semiconductor photocatalysts due to its thermal physicochemical stability but also its characteristics of environmentally friendly and sustainable material. Despite the challenging properties of g-C3N4, its photocatalytic performance is still limited by the low surface area, together with the fast charge recombination phenomena. Hence, many efforts have been focused on overcoming these drawbacks by controlling and improving the synthesis methods. With regard to this, many structures including strands of linearly condensed melamine monomers, which are interconnected by hydrogen bonds, or highly condensed systems, have been proposed. Nevertheless, complete and consistent knowledge of the pristine material has not yet been achieved. Thus, to shed light on the nature of polymerised carbon nitride structures, which are obtained from the well-known direct heating of melamine under mild conditions, we combined the results obtained from XRD analysis, SEM and AFM microscopies, and UV-visible and FTIR spectroscopies with the data from the Density Functional Theory method (DFT). An indirect band gap and the vibrational peaks have been calculated without uncertainty, thus highlighting a mixture of highly condensed g-C3N4 domains embedded in a less condensed "melon-like" framework.

5.
Food Chem ; 405(Pt A): 134791, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36345101

RESUMEN

In this research, g-C3N4/Cu@CoO/NC, which contained graphitic phase carbon nitride (g-C3N4) with a binary nanostructure and Cu@CoO/NC with a bimetallic MOF precursor, was constructed by a low-temperature pyrolysis process. The g-C3N4/Cu@CoO/NC was characterised by several techniques, including X-ray diffraction, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectroscopy. Further, it was used to prepare an electrochemical sensor for the detection of ractopamine (RAC) in meat samples. The sensor showed excellent electrochemical oxidation characteristics for RAC detection, with a wide linear range (0.005 µmol/L to 32.73 µmol/L) and low detection limit (1.53 nmol/L). Meanwhile, the reproducibility, stability and interference of the g-C3N4/Cu@CoO/NC/GCE sensor were found to be excellent. Besides, the g-C3N4/Cu@CoO/NC/GCE sensor was well-used for the detection of RAC in pork, pig liver and lamb samples with recovery rates ranging from 96.5 % to 102.2 %.


Asunto(s)
Técnicas Electroquímicas , Carne , Ovinos , Animales , Porcinos , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Electrodos
6.
Ultrason Sonochem ; 77: 105678, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34330085

RESUMEN

The deficiency of drinking water sources has become a serious crisis for the future of the world that the photocatalytic process is one of the most favorable methods for removal of artificial dyes and poisonous organic impurities. In the present study, rapid ultrasonic treatment was performed to obtain La2Sn2O7/Graphitic carbon nitrides (LSO/CN) nanocomposites with advanced photo-catalytic performance. Broccoli extract was utilized as a natural surfactant with active surface groups to control nucleation and growth of formed crystals with the creation of spatial barriers around the cations, and finally prevent nano-product agglomeration. Changing experimental parameters in synthesis reaction in turn offers a virtuous control over the nano-products size and shape. The shape and size distribution of particles was considered via diverse characterization techniques of microscopic and spectroscopic. The photocatalytic behaviors along with a kinetic study of the nanoparticles were examined by elimination and degradation of different artificial dyes under the UV waves. Effect of particle size, weight ratio of LSO:CN, type of dye, scavenger kind, dye and catalyst loading was designated on altering proficiency of nano-catalyst function. Also, the probable mechanism of removal dye by photocatalytic function was studied.

7.
J Hazard Mater ; 413: 125265, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33588330

RESUMEN

The design and fabrication of effective electrochemical sensor for ultrasensitive detection of feed additive and multidrug are highly significant in food analysis. In this work, we explored to develop the possibility for rapid detection of feed additive drug using bismuth telluride (Bi2Te3) decorated graphitic carbon nitrides (GCN) nanostructures as a modified electrode for electrochemical sensing. Herein, the modified electrode was focused on the development of electrocatalytic performances for the determination of salbutamol in food products. The electrochemical sensors are developed by bismuth telluride sheets interconnected with graphitic carbon nitrides sheets (Bi2Te3/GCN) on to a screen-printed carbon electrode. The binary nanosheets of Bi2Te3/GCN exhibited an enhanced electrocatalytic ability towards salbutamol detection owing to their selective adsorption, by the combination of electrostatic interaction of binary nanosheets and the formation of charge assisted interactions between salbutamol and Bi2Te3/GCN surfaces. A nanomolar limit of detection (1.36 nM) was calculated in 0.05 M phosphate buffer (PB) supporting electrolyte (pH 7.0) using differential pulse voltammetry. The linear dynamic ranges with respect to salbutamol concentration were 0.01-892.5 µM, and the sensitivity of the sensor was 36.277 µA µM-1 cm-2. The sensor stability and reproducibility performances were observed. However, the obtained results are highly satisfactory which suggest the application of binary nanosheets in real-time food analysis.


Asunto(s)
Albuterol , Técnicas Electroquímicas , Bismuto , Electrodos , Grafito , Carne/análisis , Compuestos de Nitrógeno , Reproducibilidad de los Resultados , Telurio
8.
Anal Chim Acta ; 1125: 220-230, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32674769

RESUMEN

Bismuth telluride is considered as an efficient and super-active electrocatalyst in the sector of electrochemical application. Herein, we prepared binary nanosheets (Bi2Te3) through simple solvothermal and hydrothermal method. Furthermore, to enhance the electrocatalytic activity, graphitic carbon nitrides nanosheets (g-C3N4) were used to prepare the composition of Bi2Te3/g-C3N4 binary nanosheets (BNs) with help of hydrothermal energy. Moreover, Bi2Te3/g-C3N4 hybrid was characterized by various techniques (XRD, XPS, SEM, TEM, EDS and EIS analysis). The electrochemical performance of Bi2Te3/g-C3N4 BNs modified GCEs were analyzed by electrochemical technique (DPV, EIS and CV methods). As modified the Bi2Te3/g-C3N4 BNs modified electrode exhibits excellent electrochemical activity towards food toxic ractopamine (RAC) with high-sensitive and nano-molar detection limit (LOD). Besides, the practical ability was analyzed to detect the RAC in meat samples using Bi2Te3/g-C3N4 BNs modified GCE.


Asunto(s)
Bismuto/química , Contaminación de Alimentos/análisis , Grafito/química , Nanoestructuras/química , Compuestos de Nitrógeno/química , Fenetilaminas/análisis , Telurio/química , Animales , Bovinos , Pollos , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Electrodos , Límite de Detección , Carne de Cerdo/análisis , Productos Avícolas/análisis , Reproducibilidad de los Resultados , Porcinos
9.
Small ; 16(20): e2001100, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32323466

RESUMEN

Graphitic carbon nitride nanosheet (CNS) represents an attractive candidate for solar fuel production. However, the abundant defects in CNS lead to serious charge recombination and limit the photocatalytic performance. Herein, the synthesis of a CNS-covalent organic framework (CNS-COF) nanosheet composite is presented for the first time. CNS with significantly reduced defects is first obtained by rationally tuning the thermal exfoliation conditions of bulk carbon nitride. Subsequent modification of the CNS with trace COF nanosheet through chemical imine bonding can not only passivate the surface termination of carbon nitride in the boundary region, but also establish strong electronic coupling between these two components. As a consequence, enhanced charge separation and photocatalytic activity are realized on the resulting CNS-COF nanosheet composite. Under optimum conditions, hydrogen is evolved at a rate of 46.4 mmol g-1 h-1 . This corresponds to an apparent quantum efficiency of 31.8% at 425 nm, which is among the best values ever reported for carbon nitride-based materials.

10.
Ultrason Sonochem ; 64: 105006, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32146332

RESUMEN

A novel network-like magnetic nanoparticle was fabricated on a graphitic carbon nitride through a facile sonochemical route at frequency 20 kHz and power 70 W. To enhance the electrocatalytic activity of the modified materials, the graphitic carbon nitrides (g-C3N4) was prepared from melamine. Monitoring of xanthine concentration level in biological fluids is more important for clinical diagnosis and medical applications. As modified CuFe2O4/g-C3N4 nanocomposite exhibits better electrochemical activity towards the oxidation of xanthine with higher anodic current compared to other modified and unmodified electrode for the detection of xanthine with larger linear range (0.03-695 µM) and lower limit of detection (13.2 nM). To compare with these methods, the electrochemical techniques may be an alternative high sensitive method due to their simplicity and rapid detection time. In addition, the practical feasibility of the sensor was inspected with biological samples, reveals the acceptable recovery of the sensor in real samples.

11.
J Hazard Mater ; 367: 629-638, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30654280

RESUMEN

Highly fluorescent, water-stable graphitic carbon nitride quantum dots (gCN QDs) synthesized by microwave assisted solvo-thermal technique and characterized via optical spectroscopy, XRD, HR-TEM, Fluorescence spectroscopy, FT-IR and Raman spectroscopy. Synthesized gCN were used for the removal of mercury ions from polluted water samples in a microcartridge format. Density functional theory (DFT) calculations revealed a possible interaction of mercury atoms, and embedment of mercury atom onto synthesized gCN surface lead to moderate structural distortion, reduced band gap and altered dielectric response. Experimentally, the excitation dependent fluorescence of QDs is highly compromised in presence of mercuric (Hg2+) and other ions, validating the theoretical findings, and establishing their use as metal sensor probes. Hg2+ binding ability with gCN QDs was further utilized in developing bioinspired micro-cartridge via covalent conjugation to Agarose microbeads. Micro-cartridge can remove heavy metal contamination from polluted water with a binding efficiency of 24.63 mg HgCl2 for 10 mg of Agarose-gCN conjugate.

12.
Chemistry ; 25(2): 590-597, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30362222

RESUMEN

Enrichment of UVI is an urgent project for nuclear energy development. Herein, magnetic graphitic carbon nitride nanosheets were successfully prepared by in situ anchoring of pyrrhotite (Fe7 S8 ) on the graphitic carbon nitride nanosheet (CNNS), which were used for capturing UVI . The structural characterizations of Fe7 S8 /CNNS-1 indicated that the CNNS could prevent the aggregation of Fe7 S8 and the saturation magnetization was 4.69 emu g-1 , which meant that it was easy to separate the adsorbent from the solution. Adsorption experiments were performed to investigate the sorption properties. The results disclosed that the sorption data conformed to the Langmuir isotherm model with the maximum adsorption capacity of 572.78 mg g-1 at 298 K. The results of X-ray photoelectron spectroscopy (XPS) demonstrated that the main adsorption mechanism are as follows: UVI is adsorbed on the surface of Fe7 S8 /CNNS-1 through surface complexation initially, then it was reduced to insoluble UIV . Thereby, this work provided an efficient and easy to handle sorbent material for extraction of UVI .

13.
Angew Chem Int Ed Engl ; 57(45): 14857-14861, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30230147

RESUMEN

Direct hydrogenation of C=C double bonds is a basic transformation in organic chemistry which is vanishing from simple practice because of the need for pressurized hydrogen. Ammonia borane (AB) has emerged as a hydrogen source through its safety and high hydrogen content. However, in conventional systems the hydrogen liberated from the high-cost AB cannot be fully utilized. Herein, we develop a novel Pd/g-C3 N4 stabilized Pickering emulsion microreactor, in which alkenes are hydrogenated in the oil phase with hydrogen originating from AB in the water phase, catalysed by the Pd nanoparticles at the interfaces. This approach is advantageous for more economical hydrogen utilization over conventional systems. The emulsion microreactor can be applied to a range of alkene substrates, with the conversion rates achieving >95 % by a simple modification.

14.
Chem Asian J ; 13(21): 3160-3164, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30157314

RESUMEN

Graphitic carbon nitride (g-CN) has attracted tremendous attention as visible-light photocatalyst. However, for further improving the catalytic activity, multilevel and hierarchical nanostructuring of g-CN is highly desirable to effectively expose active sites and facilitate separation and migration of photoexciteded charge carriers for largely enhanced photocatalytic behavior. Here, we prepare wall-mesoporous graphitic carbon nitride nanotubes (g-CNNTs) by in situ annealing of urea microrod arrays preformed in virtue of a vertical gradient freeze growth (VGFG) method. Benefiting from the distinctive structural features, the hierarchical g-CNNTs exhibit a high photocatalytic H2 production rate of 8789 µmol h-1 g-1 with an excellent apparent quantum yield of 6.3 % under visible-light irradiation and long-term cycling stability. This work provides a facile and eco-friendly strategy to prepare a new type of carbon nitride-based nanostructural material for photocatalysis and environmental remediation.

15.
R Soc Open Sci ; 5(5): 180187, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29892453

RESUMEN

The key to solving environmental and energy issues through photocatalytic technology requires highly efficient, stable and eco-friendly photocatalysts. Graphitic carbon nitride (g-C3N4) is one of the most promising candidates except for its limited photoactivity. In this work, a facile and scalable one-step method is developed to fabricate an efficient heterostructural g-C3N4 photocatalyst in situ coupled with MoS2. The strong coupling effect between the MoS2 nanosheets and g-C3N4 scaffold, numerous mesopores and enlarged specific surface area helped form an effective heterojunction. As such, the photocatalytic activity of the g-C3N4/MoS2 is more than three times higher than that of the pure g-C3N4 in the degradation of RhB under visible light irradiation. Improvement of g-C3N4/MoS2 photocatalytic performance is mainly ascribed to the effective suppression of the recombination of charge carriers.

16.
Chem Asian J ; 13(12): 1539-1543, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29696798

RESUMEN

Graphitic carbon nitride (CN) has been widely regarded as a promising photocatalyst since the discovery of its capability for photocatalytic hydrogen evolution. Herein, we developed a functional CN film on a conductive fluorine-doped tin oxide (FTO) electrode by using a microprinting-based direct growth method. Furthermore, the photoelectrochemical performance of the derived CN@FTO film was demonstrated to be enhanced by incorporating molecular cobalt species. The reduced charge transport resistance in the cobalt-modified CN@FTO films is suggested to accelerate the charge-carrier transfer rate and thus to improve the performance in photoelectrochemical application. The approach is versatile and can be further optimized by selecting a proper "ink" solution and modifier on various conductive substrates.

17.
Angew Chem Int Ed Engl ; 56(29): 8426-8430, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28326666

RESUMEN

Shape and nanostructure control has great potential to enable graphitic carbon nitride (C3 N4 ) structures with new properties and functionalities. In this work, a new type of hierarchically structured nanoporous C3 N4 is introduced. The C3 N4 exhibits unique, edelweiss-like morphology, with components ranging from millimeter-sized bunches to subnanometer-thick layers. A one-step vapor-solid deposition approach using supramolecular aggregates as the precursor is carried out to accomplish the growth. Supramolecular pre-association plays a crucial role in achieving this nanostructure by directing the vaporization and deposition processes. Furthermore, very small C3 N4 quantum dots can be readily acquired by bath sonication of the thin layers in water. The supramolecular preorganization growth strategy developed herein may provide a general methodology in the design of advanced photoelectric materials with broad applications in energy conversion and storage.

18.
Small ; 13(9)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936314

RESUMEN

Introducing heterojunction is an effective way for improving the intrinsic photocatalytic activity of a graphitic carbon nitride (GCN) semiconductor. These heterostructures are mostly introduced by interfacing GCN with foreign materials that normally have entirely different physicochemical properties and show unfavorable compatibility, thus resulting in a limited improvement of the photocatalytic performance of the resultant materials. Herein, a composite polymeric carbon nitride (CPCN) that contains both melon-based GCN and triazine-based crystalline carbon nitride (CCN) is prepared by a simple thermal reaction between lithium chloride and GCN. Thanks to the intimate contact and good compatibility between GCN and CCN, an in situ formed heterojunction acts as a driving force for separating the photogenerated charge carriers in CPCN. As a result, CPCN exhibits a significantly improved photocatalytic performance under visible light irradiation, which is, respectively, 10.6 and 5.3 times as high as those of the GCN and CCN alone. This well designed isotype heterojunction by a coupling of CCN presents an effective avenue for developing efficient GCN photocatalysts.

19.
Artículo en Inglés | MEDLINE | ID: mdl-26444336

RESUMEN

An elevated uric acid (UA) in urine or serum can affect renal function and blood pressure, which is an indicator of gout, cardiovascular and renal diseases, hypertension, etc. In this work, a new type of mixed matrix membrane (MMM), based on graphitic carbon nitrides (g-CNs) and hollow fiber (HF), was prepared and combined with solid phase microextraction (SPME) mode to determine UA in urine and serum followed by gas chromatography-mass spectrometry (GC/MS). The porous g-CNs were dispersed in ammonia, and then the exfoliated g-CNs nanosheets were held in the pores of HF by capillary forces and sonification. The prepared g-CNs modified HF (g-CNs-HF) was immersed in biofluid directly to extract UA with SPME mode and the solvent-free mode is convenient for further derivatization and analysis. To achieve the highest extraction efficiency (EF), main extraction and derivatization parameters, such as g-CNs-HF immobilizing time, sonification power and time of extraction, derivatization and desorption time, were optimized. Under the optimum extraction conditions, a favorable linearity of UA was obtained in the range 0.1-200µgmL(-1) with correlation coefficients higher than 0.9990, and the average recoveries at three spiked levels of UA in urine and serum ranged from 80.7% to 121.6%, from 84.7% to 101.1%, respectively. The obtained results demonstrated the developed g-CNs-HF-SPME is a simple, rapid, cost-effective, solvent-free method for the analysis of UA in biofluid.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Grafito/química , Nitrilos/química , Microextracción en Fase Sólida/instrumentación , Ácido Úrico/sangre , Ácido Úrico/orina , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Difracción de Rayos X
20.
ACS Appl Mater Interfaces ; 7(28): 15285-93, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26118320

RESUMEN

Solar-driven water oxidation is the key step for overall water splitting that efficiently harvests and converts solar energy into fuels; the development of a highly efficient photocatalyst that can mediate water oxidation has become an appealing challenge. Herein, we report a facile two-step process to decorate silver phosphate (Ag3PO4) particles on different types of graphitic carbon nitrides (g-C3N4) as composite photocatalysts for water oxidation. For all the Ag3PO4/g-C3N4 materials, an in situ Z-scheme is created by the generation of Ag nanoparticles which act as a cross-linking bridge between Ag3PO4 and g-C3N4 in the composite, resulting in better charge separation and higher catalytic performance. A detailed analysis emphasizes the importance of the g-C3N4 on the chemical, photophysical, and catalytic properties of the composite materials. Our results show that the alteration of the morphology dominates the performance of the composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA