Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; : 1-23, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163367

RESUMEN

Conventional wound dressings used in trauma treatment have a single function and insufficient adaptability to the wound environment, making it difficult to meet the complex demands of the healing process. Stimuli-responsive hydrogels can respond specifically to the particular environment of the wound area and realize on-demand responsive release by loading active substances, which can effectively promote wound healing. In this paper, BC/PAA-pH responsive hydrogels (BPPRHs) were prepared by graft copolymerization of acrylic acid (AA) to the end of the molecular chain of bacterial cellulose (BC) network structure. Antibacterial pH-responsive 'smart' dressings were prepared by loading curcumin (Cur) onto the hydrogels. Surface morphology, chemical groups, crystallinity, rheological, and mechanical properties of BPPRHs were analyzed by different characterization methods. The drug release behavior under different physiological conditions and bacteriostatic properties of BPPRH-Cur dressings were also investigated. The results of structural characterization and performance studies show that the hydrogel has a three-dimensional mesh structure and can respond to wound pH in a 'smart' drug release capacity. The drug release behavior of the BPPRH-Cur dressings under different environmental conditions conformed to the logistic and Weibull kinetic models. BPPRH-Cur displayed good antimicrobial activity against common pathogens of wound infections such as E. coli, S. aureus, and P. aeruginosa by destroying the cell membrane and lysing the bacterial cells. This study lays the foundation for the development of new pharmaceutical dressings with positive health, economic and social benefits.

2.
Environ Sci Pollut Res Int ; 31(21): 30288-30322, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38619767

RESUMEN

Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.


Asunto(s)
Celulosa , Mercurio , Nanocompuestos , Mercurio/química , Nanocompuestos/química , Celulosa/química , Contaminantes Químicos del Agua/química , Adsorción
3.
Int J Biol Macromol ; 266(Pt 2): 131258, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556229

RESUMEN

Lignin is the most abundant phenolic biopolymer and a renewable resource of aromatics. It can be used as a phenol substitute in the synthesis of phenolic resins. However, lignin is not as reactive as phenol, so phenolation is generally carried out to improve lignin reactivity. In this work, we suggest a solution to circumvent the limitations of traditional phenolation (e.g., high temperature, strong acids/bases, limited reactivity, and phenol toxicity). We first attempt new lignin phenolation by graft copolymerization in which polymeric phenol, instead of toxic phenol, is introduced to lignin. Organosolv lignin from hardwood was modified with 2-bromoisobutyryl bromide to act as a lignin macroinitiator (L-Br). A protected phenolic monomer, 4-acetoxystyrene, was graft copolymerized onto L-Br using CuBr2/tris[2-(dimethylamino)ethyl]amine as a catalyst/ligand, after which the resultant lignin copolymer was deacetylated to produce lignin grafted with poly(4-hydroxystyrene). This poly-phenolation process was conducted at room temperature without the strong acids/bases and toxic phenol required in conventional phenolation. The poly-phenolated lignin was analyzed using 1H-, 13C-, and 31P NMR spectroscopy and gel permeation chromatography. This novel phenolation process enhanced the reactive sites of lignin more than tenfold. It also reduced the dark color of technical lignins significantly, thereby overcoming a serious obstacle to their applicability.


Asunto(s)
Lignina , Polimerizacion , Lignina/química , Fenoles/química , Polímeros/química , Espectroscopía de Resonancia Magnética
4.
Polymers (Basel) ; 16(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38337334

RESUMEN

In this study, the synthesis and characterization of grafted cellulose fiber with binary monomers mixture obtained using a KMnO4/citric acid redox initiator were investigated. Acrylonitrile (AN) was graft copolymerized with acrylic acid (AA) and styrene (Sty) at different monomer ratios with evaluating percent graft yield (GY%). Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were characterized by SEM, FT-IR, 13C CP MAS NMR, TGA, and XRD. An AN monomer was used as principle-acceptor monomer, and GY% increases with AN ratio up to 60% of total monomers mixture volume. The adsorption behaviors of Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) were studied for the adsorption of Ni(II) and Cu(II) metal ions from aqueous solution. Optimal adsorption conditions were determined, including 8 h contact time, temperature of 30 °C, and pH 5.5. Cell-g-P(AN-co-AA) showed maximum adsorption capacity of 435.07 mg/g and 375.48 mg/g for Ni(II) and Cu(II), respectively, whereas Cell-g-P(AN-co-Sty) showed a maximum adsorption capacity of 379.2 mg/g and 349.68 mg/g for Ni(II) and Cu(II), respectively. Additionally, adsorption equilibrium isotherms were studied, and the results were consistent with the Langmuir model. The Langmuir model's high determinant coefficient (R2) predicted monolayer sorption of metal ions. Consequently, Cell-g-P(AN-co-AA) and Cell-g-P(AN-co-Sty) prepared by a KMnO4/citric acid initiator were found to be efficient adsorbents for heavy metals from wastewater as an affordable and adequate alternative.

5.
Beilstein J Nanotechnol ; 15: 168-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352717

RESUMEN

Modification of graphene oxide (GO) by vinyltriethoxysilane (VTES) was investigated to study the effect of silanized GO on radical graft copolymerization of GO onto deproteinized natural rubber (DPNR). The modified GO, GO-VTES (a and b), was characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, contact angle, thermal gravimetric analysis, and scanning electron microscopy. The XRD results showed the appearance of an amorphous region of silica particles at a diffraction angle of 22°. The formation of silica was investigated by 29Si NMR, and it was found that the hydrolysis and condensation of VTES proceed more completely in basic conditions than in acidic conditions. The silica content of GO-VTES(b) was 43%, which is higher than that of GO-VTES(a) (8%). Morphology of silica was observed by SEM. The DPNR/GO-VTES nanocomposites prepared with the same amount of GO, GO-VTES(a), and GO-VTES(b) were characterized with tensile tests and dynamic mechanical tests. The stress at break of DPNR/GO-VTES(a) and DPNR/GO-VTES(b) was 5.2 MPa and 4.3 MPa, respectively, which were lower than that of DPNR/GO. However, it exhibited higher stress at small strains and higher storage modulus than DPNR/GO.

6.
Carbohydr Polym ; 331: 121847, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38388032

RESUMEN

Tamarind seed polysaccharide (TSP) is a biocompatible, non-ionic polymer with antioxidant properties. Its uses include drug delivery, food industry, and wastewater treatment. TSP has various hydroxy functional groups, one of the most favorable sites for graft copolymerization of different monomers. Hence, various chemical methods for TSP modification were developed to satisfy increasing industrial demand. Of particular interest in scientific community are the methods of graft copolymerization because of their ability to alter the physicochemical properties of TSP, including pH sensitivity and the swelling index, leading to improvements in the adsorption efficiency of hazardous heavy metals and dyes from wastewater effluents. Moreover, in recent years, TSP has been used for controlled drug delivery applications due to its unique advantages of high viscosity, broad pH tolerance, non-carcinogenicity, mucoadhesive properties, biocompatibility, and high drug entrapment capacity. In light of the plethora of literature on the topic, a comprehensive review of TSP-based graft copolymers and unmodified and modified TSP important applications is necessary. Therefore, this review comprehensively highlights several synthetic strategies for TSP-grafted copolymers and discusses unmodified and modified TSP potential applications, including cutting-edge pharmaceutical, environmental applications, etc. In brief, its many advantages make TSP-based polysaccharide a promising material for applications in various industries.


Asunto(s)
Tamarindus , Tamarindus/química , Polisacáridos/química , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Viscosidad , Semillas/química
7.
Polymers (Basel) ; 16(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257054

RESUMEN

Through the graft polymerization of acrylic monomers onto starch, materials with interesting new properties can be synthesized. Fenton's chemistry, Fe2+/H2O2, is considered to be attractive for the initiation of graft polymerization with the monomer acrylic acid since it is cheap and reacts quickly at ambient conditions and should therefore be easy to scale up. However, the selectivity of the grafting versus the homopolymerization reaction poses a challenge with this monomer and this type of initiator. In the present review paper, we investigate why data from the literature on grafting systems with other monomers and initiation systems tend to show higher graft selectivity. A scheme is presented, based on reaction engineering principles, that supports an explanation for these observed differences. It is found that more selective activation of starch is a factor, but perhaps even more important is a low monomer-to-starch ratio at the starting sites of graft reactions. Since water is the most common solvent, monomers that are less water-soluble have an advantage in this respect. Based on the proposed scheme, methods to improve the graft selectivity with Fenton's initiator and acrylic acid are evaluated. Most promising appears to be a method of gradual monomer dosage. With gelatinized cassava starch in a batch reactor, both the grafting percentage (17 => 29%) and graft selectivity (18 => 31%) could be improved. This can be considered a principal breakthrough. Still, more research and development would be needed to refine the method and to implement the idea in a continuous reactor at a larger scale.

8.
Int J Biol Macromol ; 256(Pt 2): 128518, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042322

RESUMEN

Chemical modification of guar gum was done by graft copolymerization of monomer hydroxyethyl methacrylate (HEMA) using azobisisobutyronitrile (AIBN) as initiator. Optimal reaction parameters were settled by varying one reaction condition and keeping the other constant. The optimum reaction conditions worked out were solvent system: binary, [H2O] = 15.00 mL, [acetone] = 5.00 mL, [HEMA] = 82.217× 10-2 mol/L, [AIBN] = 3.333 × 10-2 mol/L, reaction time = 3 h, reaction temperature = 60 °C on to 1.00 g guar gum with Pg = 1694.6 and %GE = 68,704.152. Pure guar gum polymer and grafts were analyzed by several physicochemical investigation techniques like FTIR, SEM, XRD, EDX, and swelling studies. Percent swelling of the guar gum polymer and grafts was investigated at pH 2.2, 7.0, 7.4 and 9.4 concerning time. The finest yield of Ps was recorded at pH 9.4 with time 24 h for graft copolymer. Guar gum and grafted samples were explored for the sorption of toxic dye Bismarck brown Y from the aqueous solution with respect to variable contact time, pH, temperature and dye concentration so as to investigate the stimuli responsive sorption behaviour. Graft copolymers showed better results than guar gum with percent dye uptake (Du) of 97.588 % in 24 h contact time, 35 °C temperature, 9.4 pH at 150.00 ppm dye feed concentration as compared to Guar gum which only showed 85.260 % dye uptake at alike dye fed concentration. The kinetic behaviour of the polymeric samples was evaluated by applying many adsorption isotherms and kinetic models. The value of 1/n was between 0 â†’ 1 showing that there was physisorption of the BB dye that took place on the surface of the polymers. Thermodynamics of BB Y adsorption onto hydrogels was investigated concerning the Van't Hoff equation. -∆G° values obtained from the curve proved the spontanity of the process. Within the context of adsorption efficiency, an investigation was conducted to examine the process of sorption of Bismarck brown Y dye from aqueous solutions. The graft copolymers demonstrated remarkable adsorption abilities, achieving a dye uptake (Du) of 97.588 % over a 24-h period at a temperature of 35 °C, pH level of 9.4, and a dye concentration of 150.00 ppm. The raised adsorption capacity was additionally corroborated by the application of several adsorption isotherms and kinetic models, which indicated that physisorption is the prevailing process/mechanism. Additionally, the thermodynamic research, utilising the Van't Hoff equation, validated the spontaneity of the adsorption phenomenon, as evidenced by the presence of a negative ∆G° values. The thermodynamic analysis revealed herein establishes a strong scientific foundation for the effectiveness of adsorbent composed of graft copolymers based on guar gum. The research conclude the efficiency of the guar gum based grafted copolymers for the water remediation as efficient adsorbents. The captured dye can be re-utilised and the hydrogels can be used for the same purpose in number of cycles.


Asunto(s)
Galactanos , Hidrogeles , Mananos , Metacrilatos , Nitrilos , Contaminantes Químicos del Agua , Hidrogeles/química , Gomas de Plantas/química , Colorantes/química , Agua/química , Termodinámica , Polímeros/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Contaminantes Químicos del Agua/química
9.
J Environ Sci (China) ; 139: 193-205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105047

RESUMEN

A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC) was prepared by molecular structure control. The characterization results showed that FS@CTS-P(AM-DMC) had a uniform size of about 21.46 nm, featuring a typical core-shell structure, and the average coating layer thickness of CTS-P(AM-DMC) was about 5.03 nm. FS@CTS-P(AM-DMC) exhibited excellent flocculation performance for kaolin suspension, achieved 92.54% turbidity removal efficiency under dosage of 150 mg/L, pH 7.0, even at high turbidity (2000 NTU) with a removal efficiency of 96.96%. The flocculation mechanism was revealed to be dominated by charge neutralization under acidic and neutral conditions, while adsorption and bridging effects play an important role in alkaline environments. The properties of magnetic aggregates during flocculation, breakage, and regeneration were studied at different pH levels and dosages. In the process of magnetophoretic, magnetic particles collide and adsorb with kaolin particles continuously due to magnetic and electrostatic attraction, transform into magnetic chain clusters, and then further form three-dimensional network magnetic aggregates that can capture free kaolin particles and other chain clusters. Particle image velocimetry confirmed the formation of eddy current of magnetic flocs and experienced three stages: acceleration, stabilization, and deceleration.


Asunto(s)
Quitosano , Purificación del Agua , Quitosano/química , Caolín/química , Floculación , Fenómenos Magnéticos , Purificación del Agua/métodos
10.
Environ Sci Pollut Res Int ; 30(44): 99762-99773, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37615910

RESUMEN

The contents and kinds of oxygen-containing functional groups are very significant when preparing cationic hydrochar coagulants via graft copolymerization. Herein, the hydrothermal conditions to produce sludge-based hydrochar (SBC) precursors were optimized by introducing different kinds and amounts of modifying agents (i.e., HCOOH, citric acid (CA), H2SO4, and H2O2), then the surface properties and flocculation performance of derived cationic coagulants (SBC-g-DMC) were studied. Results showed that the utilization of four modifiers raised the acidic groups on the SBC surface; thereinto, the presence of CA could evidently increase the content of phenolic hydroxyl groups. After DMC monomer grafting, the formed coagulants possess positive zeta potentials over a wide pH range (i.e., 3.0 ~ 11.0), showing a typical cationic property. The grafting ratio and efficiency, as well as the cationic degree of coagulants prepared with different SBC precursors follow a descending order of SBCCA-g-DMC > [Formula: see text]-g-DMC > SBCHCOOH-g-DMC > [Formula: see text]-g-DMC; thus, SBCCA-g-DMC coagulant with the best grafting result shows a superior flocculation performance. When a dosage of 4 mg/L was adopted, the average turbidity removal rate of SBCCA-g-DMC could reach up to 94.44%. Meanwhile, due to the possible and robust oxidation with the initiator, H2O2 seems not a perfect modifier for SBC preparation. This study could provide an essential reference for the optimal synthesis of SBC and its based coagulants for organic matter recovery and pollutant removal.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Peróxido de Hidrógeno , Floculación , Purificación del Agua/métodos
11.
Int J Biol Macromol ; 252: 126447, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37633563

RESUMEN

The aim of this study is to prepare an eco-friendly bioadsorbent by graft copolymerization and modification from hemp fiber including bio-macromolecules such as cellulose, hemicellulose and lignin for anionic dyes adsorption from aqueous solutions, and to investigate adsorptive properties. The prepared cellulose-supported bioadsorbent (TEPA-(GMA-g-HF)) was characterized in detail using SEM-EDX, STEM, FTIR, XRD, TGA and BET techniques and calculating the point of zero charge. It was used as an adsorbent to remove three different anionic dyes, Remazol Brilliant Blue R (RBBR), Reactive Red 120 (RR120) and Reactive yellow 160 (RY160) from the aqueous medium. The effects of adsorbent amount, pH, initial dye concentration, time and temperature on the adsorption were investigated. From the results, it was determined that the adsorption of all three dyes to the developed fibrous bioadsorbent was more compatible with the pseudo-second-order kinetic and the Langmuir isotherm model. It was found that the adsorption capacity increased with increasing temperature, and the adsorption capacity at 298 K was 91.70 mg/g for RBBR, 83.33 for RY160 and 76.34 mg/g for RR120, respectively. Dye removal efficiencies were provided as approximately 100 % at acidic pHs. This high removal efficiency has also achieved in the dense matrix medium, and even after five consecutive reused.


Asunto(s)
Cannabis , Contaminantes Químicos del Agua , Colorantes/química , Celulosa/química , Temperatura , Adsorción , Cinética , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/química
12.
Int J Biol Macromol ; 244: 125359, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37321441

RESUMEN

Natural Rubber (NR), extracted from Hevea brasiliensis rubber trees, is a biocompatible biopolymer with properties that support in the tissue repair process. However, its biomedical applications are limited due to the presence of allergenic proteins, hydrophobicity, and unsaturated bonds. To overcome these limitations and contribute to the development of new biomaterials, this study aims to deproteinize, epoxidize, and subject NR to copolymerization by grafting with hyaluronic acid (HA), which is widely recognized for its bioactive properties in the medical field. The deproteinization, epoxidation, and graft copolymerization through the esterification reaction were confirmed by Fourier Transform Infrared Spectroscopy and Hydrogen Nuclear Magnetic Resonance Spectroscopy analysis. Thermogravimetry and Differential Scanning Calorimetry demonstrated that the grafted sample exhibited a lower degradation rate and a higher glass transition temperature, indicating strong intermolecular interactions. Moreover, contact angle measurement revealed that the grafted NR exhibited a high hydrophilic character. The results obtained suggest the formation of a novel material with great potential for application in biomaterials involved in tissue repair processes.


Asunto(s)
Hevea , Goma , Goma/química , Ácido Hialurónico , Materiales Biocompatibles , Espectroscopía Infrarroja por Transformada de Fourier
13.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177233

RESUMEN

The paper presents a feasible strategy through one-step bulk-suspension polymerization, grafting PEG onto an in situ synthesized copolymer. In more detail, PEG was grafted onto a homemade polystyrene/maleic anhydride copolymer (SMA) via bulk-suspension polymerization with poly(vinyl alcohol) as a suspending agent. According to the optimal reaction conditions, the grafting rate of PEG was 56.2% through chemical titration experiments. At the same time, the quantitative relationship between the grafting rate and enthalpy was demonstrated for the first time in a PEG-based solid-solid phase change material (S-SPCM). Morphology observation revealed that the obtained S-SPCM is made up of white microspheres of approximately 100-150 µm. The powdery product polystyrene/maleic anhydride grafted polyethylene glycol (SMA-g-PEG) obtained through bulk-suspension polymerization endowed that the whole product could be used directly as a phase change material without postprocessing. The melting enthalpy and crystallization enthalpy of SMA-g-PEG were 79.3 J/g and 76.9 J/g, respectively. Based on the effective fixed load of PEG, the macrostructure of SMA-g-PEG was almost unchanged at 70 °C compared with the macrostructures at 20 °C, and the latent heat of SMA-g-PEG was decreased slightly after 1000 thermal cycles. Overall, the obtained SMA-g-PEG can be used as a filler in insulation materials and composited with fibers to obtain phase change thermoregulated smart textiles.

14.
Chemosphere ; 333: 138909, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37187370

RESUMEN

Capturing the abundant organic matter residing in wastewater can not only reduce the emission of CO2 from the source, but the enriched organics can also be used for anaerobic fermentation to generate and offset energy consumption in wastewater treatment processes. The key is to find or develop low-cost materials that can capture organic matter. Herein, sewage sludge-derived cationic aggregates (SBC-g-DMC) were successfully prepared via a hydrothermal carbonization process coupled with a graft copolymerization reaction for recovering organic matter from wastewater. Based upon preliminary screening of synthesized SBC-g-DMC aggregates regarding grafting rate, cationic degree, and flocculation performance, SBC-g-DMC2.5 aggregate prepared with 60 mg of initiator, DMC-to-SBC mass ratio of 2.5:1, 70 °C, and 2 h of reaction time was selected for further characterization and evaluation. Results showed that SBC-g-DMC2.5 aggregate has a positively-charged surface over a wide pH range of 3-11 and a hierarchical micro-/nano-structure, endowing it with an excellent organic matter capture efficiency (97.2% of pCOD, 68.8% of cCOD, and 71.2% of tCOD). Meanwhile, SBC-g-DMC2.5 exhibits inappreciable trapping ability for the dissolved COD, NH3-N, and PO43-, guaranteeing the regular running of subsequent biological treatment units. Electronic neutralization, adsorption bridging, and sweep coagulation between cationic aggregates surface and organic matter were identified as the primary mechanisms for SBC-g-DMC2.5 to capture organics. This development is expected to provide a theoretical reference for sewage sludge disposal, carbon reduction, and energy recovery during municipal wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Carbono , Adsorción
15.
Gels ; 9(4)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37102908

RESUMEN

In this work, we prepared highly swelling, stimuli-responsive hydrogels capable of the highly efficient adsorption of inorganic pollutants. The hydrogels were based on hydroxypropyl methyl cellulose (HPMC) grafted with acrylamide (AM) and 3-sulfopropyl acrylate (SPA) and were synthesized via the growth (radical polymerization) of the grafted copolymer chains on HPMC, which was activated by radical oxidation. These grafted structures were crosslinked to an infinite network by a small amount of di-vinyl comonomer. HPMC was chosen as a cheap hydrophilic and naturally sourced polymer backbone, while AM and SPA were employed to preferentially bond coordinating and cationic inorganic pollutants, respectively. All the gels displayed a pronounced elastic character, as well as considerably high values of stress at break (several hundred %). The gel with the highest fraction of the ionic comonomer SPA (with an AM/SPA ratio = 0.5) displayed the highest equilibrium swelling ratio (12,100%), the highest volume response to temperature and pH, and the fastest swelling kinetics, but also the lowest modulus. The other gels (with AM/SPA = 1 and 2) displayed several times higher moduli but more modest pH responses and only very modest temperature sensitivity. Cr(VI) adsorption tests indicated that the prepared hydrogels removed this species from water very efficiently: between 90 and 96% in one step. The hydrogels with AM/SPA ratios of 0.5 and 1 appeared to be promising regenerable (via pH) materials for repeated Cr(VI) adsorption.

16.
Int J Biol Macromol ; 235: 123888, 2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36870636

RESUMEN

In the last decade, interest in the development of new graft copolymers based on natural polysaccharides has grown remarkably due to their potential applications in the wastewater treatment, biomedical, nanomedicine, and pharmaceutical fields. Herein, a novel graft copolymer of κ-carrageenan with poly(2-hydroxypropylmethacrylamide) (κ-Crg-g-PHPMA) was synthesized using a 'microwave induced' technique. The synthesized novel graft copolymer has been well characterized in terms of FTIR, 13C NMR, molecular weight determination, TG, DSC, XRD, SEM, and elemental analyses, taking κ-carrageenan as a reference. The graft copolymers' swelling characteristics were investigated at pH 1.2 and 7.4. The results of swelling studies displayed that the incorporation of PHPMA groups on κ-Crg provides increasing hydrophilicity. The effect of PHPMA percentage in the graft copolymers and pH of the medium on the swelling percentage was studied and the findings exhibited that swelling ability increased with the increment in PHPMA percentage and pH of the medium. The best swelling percentage was attained at pH = 7.4 and a grafting percentage of 81 % reaching 1007 % at the end of 240 min. Moreover, cytotoxicity of the synthesized κ-Crg-g-PHPMA copolymer was assessed on the L929 fibroblast cell line and obtained to be non-toxic.


Asunto(s)
Microondas , Polímeros , Carragenina/química , Polimerizacion , Polímeros/química , Peso Molecular
17.
Polymers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771942

RESUMEN

Petroleum-based polymers are used in a multitude of products in the commercial world, but their high degree of contamination and non-biodegradability make them unattractive. The development and use of polymers derived from nature offer a solution to achieve an environmentally friendly and green alternative and reduce waste derived from plastics. This review focuses on showing an overview of the most widespread production methods for the main biopolymers. The parameters affecting the development of the technique, the most suitable biopolymers, and the main applications are included. The most studied biopolymers are those derived from polysaccharides and proteins. These biopolymers are subjected to production methods that improve their properties and modify their chemical structure. Process factors such as temperature, humidity, solvents used, or processing time must be considered. Among the most studied production techniques are solvent casting, coating, electrospinning, 3D printing, compression molding, and graft copolymerization. After undergoing these production techniques, biopolymers are applied in many fields such as biomedicine, pharmaceuticals, food packaging, scaffold engineering, and others.

18.
Polymers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771989

RESUMEN

Graft copolymerization has been a popular technique in recent years for adding different functional groups to polymers. In our research, polypropylene (PP) films are grafted with acrylonitrile (An) and acrylic acid (AAc) monomers to make them hydrophilic while retaining their mechanical qualities. Gamma radiation is used in this approach to establish active spots on an inert polymer that are appropriate for adding monomers radicals to form grafts, a procedure that is extremely difficult to perform using normal chemical processes. The graft parameters are investigated in order to acquire the highest percentage of graft. FTIR (Fourier transform infrared spectroscopy) spectra are used to analyze the grafting of AAc and An. SEM (scanning electron microscopy) and XRD (X-ray diffraction) micrographs are used to validate them. The specimens' tensile strength and hardness are measured and contrasted with blank PP films. Measurements are made of the effects of grafting on the tensile strength and elongation of the films, and a crucial grafting degree is established in order to preserve these properties. Water uptake is measured to adapt the copolymer to water treatment, and thermal behavior TGA (thermal gravimetric analysis) and DSC (diffraction scanning calorimeter) of the produced copolymer were performed. The elimination of cadmium was verified by an atomic absorption spectrophotometer (AAS) under different conditions of pH, time, and degree of grafting.

19.
Int J Biol Macromol ; 227: 1271-1281, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36464187

RESUMEN

In this work, natural biopolymer stemming from lignocellulosic peanut hull biomass was used as a green and low-cost adsorbent to eliminate anionic Congo red (CR) and Cr(VI) ions from aqueous sample. In order to enhance the removal performance, the lignocellulosic biopolymer was subjected to amino-modification by the graft copolymerization of (3-acrylamidopropyl) trimethylammonium chloride and N, N'-methylenebisacrylamide. The property of the prepared amino-functionalized biopolymer (AFB) was examined through FTIR, TG, SEM, particle size analysis, zeta potential determination and XPS. The adsorption efficacy of AFB for CR and Cr(VI) was tested at different pH, contact time and initial concentration. The kinetic, isotherm and thermodynamics investigations revealed that the uptakes of CR and Cr(VI) were the combination processes of chemical and physical interactions, and both endothermic in nature. The AFB exhibited good reusability without significant loss in adsorption capacity after five consecutive cycles. Mechanistic analysis indicated that the quaternary ammonium groups in AFB contributed a lot to the binding of anionic compounds through electrostatic attraction. In addition, n-π and hydrogen bonding while reduction and coordination were also responsible for the removal of CR and Cr(VI), respectively. The present study provides a favorable strategy for the removal of anionic contaminates in water by using green and sustainable lignocellulosic wastes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Cromo/química , Biopolímeros , Rojo Congo , Adsorción , Cinética
20.
Polymers (Basel) ; 14(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365597

RESUMEN

This work aims to enhance the polarity of natural rubber by grafting copolymers onto deproteinized natural rubber (DPNR) to improve its compatibility with silica. Poly(acrylic acid-co-acrylamide)-grafted DPNR ((PAA-co-PAM)-DPNR) was successfully prepared by graft copolymerization with acrylic acid and acrylamide in the latex stage, as confirmed by FTIR. The optimum conditions to obtain the highest conversion, grafting efficiency, and grafting percentage were a reaction time of 360 min, a reaction temperature of 50 °C, and an initiator concentration of 1.0 phr. The monomer conversion, grafting efficiency, and grafting percentage were 91.9-94.1, 20.8-38.9, and 2.1-9.9%, respectively, depending on the monomer content. It was shown that the polarity of the natural rubber increased after grafting. The (PAA-co-PAM)-DPNR was then mixed with silica to prepare DPNR/silica composites. The presence of the (PAA-co-PAM)-DPNR and silica in the composites was found to improve the mechanical properties of the DPNR. The incorporation of 10 phr of silica into the (PAA-co-PAM)-DPNR with 10 phr monomer increased its tensile strength by 1.55 times when compared to 10 phr of silica loaded into the DPNR. The silica-filled (PAA-co-PAM)-DPNR provided s higher storage modulus, higher Tg, and a lower tan δ peak, indicating stronger modified DPNR/silica interactions and greater thermal stability when compared to silica-filled DPNR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA