Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 462: 140925, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39190981

RESUMEN

Grape pomace (GP) and pecan shell (PS) are two by-products rich in phenolic compounds (PC), and dietary fiber (DF) that may be considered for the development of functional baked foods. In this study, four formulations with different GP:PS ratios (F1(8%:5%), F2(5%:5%), F3(5%:2%), F4(0%:5%), and control bread (CB)) were elaborated and characterized (physiochemical and phytochemical content). Also, their inner structure (SEM), changes in their FTIR functional group's vibrations, and the bioaccessibility of PC and sugars, including an in vitro glycemic index, were analyzed. Results showed that all GP:PS formulations had higher mineral, protein, DF (total, soluble, and insoluble), and PC content than CB. Additionally, PC and non-starch polysaccharides affected gluten and starch absorbance and pores distribution. In vitro digestion model showed a reduction in the glycemic index for all formulations, compared to CB. These findings highlight the possible health benefits of by-products and their interactions in baked goods.


Asunto(s)
Pan , Fibras de la Dieta , Índice Glucémico , Fenoles , Vitis , Fibras de la Dieta/análisis , Fibras de la Dieta/metabolismo , Pan/análisis , Vitis/química , Fenoles/química , Fenoles/metabolismo , Humanos , Digestión , Alimentos Fortificados/análisis , Residuos/análisis
2.
Foods ; 13(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39272619

RESUMEN

The effects of replacing 5-25% of wheat flour (WF) with Taiwanese cocoa bean shells (CBSs) on the physicochemical, antioxidant, starch digestion, and sensory properties of the bread were studied. The lead (0.18) and cadmium (0.77) contents (mg/kg) of the CBSs were below the Codex Alimentarius specifications for cocoa powder. Ochratoxin A and aflatoxins (B1, B2, G1, and G2) were not detected in the CBSs. The CBSs were rich in dietary fiber (42.9%) and bioactive components and showed good antioxidant capacity. The ash, fat, protein, dietary fiber, crumb a* and c*, hardness, chewiness, total phenols, and antioxidant activities of the bread increased with an increasing CBSs level. The starch hydrolysis rate (45.1-36.49%) of the CBS breads at 180 min was lower than that of the control (49.6%). The predicted glycemic index of the bread (CBS20 and CBS25) with 20-25% of the WF replaced with CBSs was classified as a medium-GI food using white bread as a reference. In the nine-point hedonic test, the overall preference scores were highest for control (6.8) and CBS breads, where CBSs replaced 5-10% of WF, with scores of 7.2 and 6.7. CBS20 supplemented with an additional 20-30% water improved its volume, specific volume, and staling rate, but the overall liking score (6.5-7.2) was not significantly different from the control (p > 0.05). Overall, partially replacing wheat flour with CBSs in the production of baked bread can result in a new medium-GI value food containing more dietary fiber, bioactive compounds, and enhanced antioxidant capacity.

3.
Curr Res Food Sci ; 8: 100685, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318313

RESUMEN

Edible insects have a low environmental impact but are rich in nutrients and have been promoted as alternative protein sources. However, adding insect flour to bread negatively affects the overall quality, especially loaf volume and textural properties. Furthermore, relevant studies on chitin are limited. Therefore, this study examined chitin hydrolysis using lysozymes to enhance the quality characteristics in defatted mealworm (Tenebrio molitor L.) powder (DF-M)-supplemented bread. The chitin hydrolysis degree by lysozymes was evaluated using the 3,5-dinitrosalicylic acid assay and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. The amount of chitin oligomers increased with time, and no significant difference in the hydrolysis efficiency between water and 400 mM acetate buffer was observed. Enzymatic hydrolysis improved the DF-M water- and oil-binding and antioxidant capacities. In addition, chitin hydrolysis increased the volume and softened the texture of white bread. In particular, bread supplemented with DF-M hydrolyzed for 4 h at 10 % had the highest moisture content among the mealworm-added bread groups during storage for 5 days. Moreover, sensory evaluation showed a positive effect of chitin hydrolysis on acceptability. Our findings indicate that chitin hydrolysis can improve the quality of bread containing insect additives. In conclusion, this study provides novel insights into producing high-quality and functional bakery products from edible insects by the enzymatic hydrolysis of edible insect powders and could expand the applications of edible insects as food ingredients.

4.
Foods ; 13(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38397532

RESUMEN

The diversity in the global food market is expanding as thousands of new products enter the business every year, among which nutraceutical and functional foods hold important positions. The present research work aimed at the nutritional evaluation of three medicinal herbs, i.e., turmeric (Curcuma longa L.), ginger (Zingiber officinale), and black cumin (Nigella sativa). A bread formulation was enriched with the individual/combined supplementation (1-3%) of these herbs. Later, the bread was analyzed for nutritional, rheological, textural, and sensorial characteristics. The results revealed that the herbs improved the nutritional composition of bread, especially ash and fiber, as the maximum ash and fiber contents were noticed in T15 (2.0% dried powder of each plant) with values of 1.64 ± 0.04% and 4.63 ± 0.16%, respectively. The results regarding the rheological behavior showed minor variations in the rheological traits and a slight increase in dough development time up to 4.50 ± 0.20 min in T10 from 2.80 ± 0.13 min in T0. The sensorial attributes also indicated their marked suitability as external and internal characteristics were least affected by the addition of the herbs. Although some parameters like the crust and crumb colors were affected by the addition of black cumin, showing values of 6.25 ± 0.52 and 4.44 ± 0.19, respectively, in T15, and aroma characteristics were affected by the addition of ginger, supplementation with a combination of herbs at lower doses mitigated the adverse effects of other herbs. Moreover, shelf-life extension, especially with the addition of turmeric powder, was the hallmark of this research. This study concluded that medicinal herbs can be incorporated into baked products to improve the nutritional and sensorial attributes of functional herbal bread.

5.
Foods ; 12(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38137219

RESUMEN

Gluten-related disorders, including celiac disease, wheat allergy, and non-celiac gluten sensitivity, have emerged as a significant phenomenon affecting people worldwide, with an estimated prevalence of nearly 5% globally. The only currently available treatment for this disease involves the exclusion of gluten from the diet, which is particularly challenging in the case of bakery products. Gluten-free bread (GFB) presents certain disadvantages when compared to traditional wheat bread, including inferior sensory attributes, technological characteristics, and lower protein and fiber content. Numerous studies have focused on strategies to improve these aspects of GFB. However, there are limited reviews regarding the content of the bioactive compounds of GFB, such as polyphenols. Polyphenols are molecules found in various foods that play a vital role in protecting the body against oxidative stress. This is particularly relevant for individuals with gluten intolerance or celiac disease, as they often experience increased oxidative stress and inflammation. Therefore, the objective of this review is to explore the use of different strategies for increasing the polyphenolic content and the antioxidant properties of GFB. Gluten-free cereals and pseudocereals are the most used matrices in GFB. Buckwheat can be a valuable matrix to enhance the nutritional profile and antioxidant properties of GFB, even more so when the whole grain is used. In the same way, the addition of various by-products can effectively increase the bioactive compounds and antioxidant activity of GFB. Furthermore, regarding the contribution of the phenolics to the bitterness, astringency, color, flavor, and odor of food, it is essential to analyze the sensory properties of these breads to ensure not only enriched in bioactive compounds, but also good consumer acceptance. In vitro studies are still in few number and are very important to execute to provide a better understanding of the bioactive compounds after their consumption.

6.
Mol Biotechnol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991627

RESUMEN

The global prevalence of food-borne infections has become a major concern. Food-borne pathogens like Campylobacter jejuni, Salmonella enterica, and Clostridium botulinum cause food poisoning and even mortality, necessitating the maintenance of aseptic conditions during food processing. The sterilization of food processing facilities often requires chemical and heat treatment. The formulation of many chemical-based disinfectants includes chemicals generating toxic and carcinogenic by-products. The microalgae like Chlorella spp. reportedly exhibit antimicrobial activity and therefore, can be used for formulating safer and eco-friendly natural sanitizers. This study aims to aseptically prepare functional bread using Ethiopian ingredients, highlighting the application of microalgae-based disinfectant formulation and various disinfection techniques. The functional bread was designed to be potentially effective in reducing hypernatremia condition which is indicative of high levels of sodium in serum that can cause an array of symptoms including deaths in serious cases. The physico-chemical and sensory properties of the designed functional bread were analyzed. The interaction of phytochemicals in the ingredients with the target receptor (Vasopressin V2 receptor) and their drug-likeness were determined using molecular docking and Lipinski's rule of five analyses. The results suggest that the designed functional bread incorporating Ethiopian ingredients may serve as an effective dietary strategy to prevent hypernatremia. Aseptic processing of the bread ensures longer shelf life and prevention of spoilage by food pathogens.

7.
Foods ; 12(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37893636

RESUMEN

In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products' color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408-2.656 mg GAE/g, and the antiradical activity was in the range of 35.75-38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification.

8.
Foods ; 12(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37761128

RESUMEN

'Violetto di Ramacca' is a local variety of artichoke grown in Sicily (Southern Italy), known for its purple color with green streaks. In this study, the effects of two different preparation and drying methods (method A, fresh sample oven-dried at 40 °C for 48 h then mixed and ground into flour; and B, minced and frozen sample oven-dried at 40 °C for 24 h then blended and ground into flour) for flours from different parts of the artichoke (bracts, stems, and mix), used at different percentages of integration (5, 7.5, and 10%), in combination with re-milled semolina, have been evaluated. The polyphenol contents of the flours produced with the two methods were measured. The results showed significant differences between the methods and samples, with a range from 9.09 mg GAE/g d.m. (bracts 100%, method A) to 2.62 mg/g (mix 100%, method B). The values were then lowered in the flour products with supplements ranging from 0.96 mg GAE/g (bract flour 10%, method A) to 0.11 mg GAE/g (mixed flour 7.5%, method B). As the amounts of polyphenols increased, the antioxidant activity increased, with a range that varied in the pure flour from 8.59 mg trolox eq/g d.m. (bract flour, method A) to 3.83 mg trolox eq/g d.m. (mixed flour, method B). These flours were also analyzed for color, highlighting a clear difference between methods A (greener) and B (browner). The flours thus obtained were used to produce breads, which were evaluated for their physicochemical characteristics during 4 days of storage. The results showed a reduction in volumes and heights, an increase in the percentage of integration of the artichoke flours, a greater quantity of moisture in the integrated breads, and a lower reduction in the structural characteristics during storage compared to the control breads. The TPA was conducted on the breads from T0 to T4, highlighting that, although initially more compact, the integrated breads offered less alteration of the values during storage. The aw ranged from 0.63 (mix flour 5%, method B) to 0.90 (bract flour 5%, method B). The amounts of polyphenols (from 0.57 mg GAE/g in bread with bracts at 10% (method A) to 0.13 mg GAE/g in bread with mix 5% (method B)) and the antioxidant activity (from 0.55 mg trolox eq/g d.m. in bread with bract flour 10% (method A) to 0.14% mg trolox eq/g d.m. in bread with mix flour) were also evaluated, showing a trend similar to the values obtained in the flours. Colorimetric tests highlighted a color more similar to wholemeal bread in the loaves produced with method B. Statistical factor analysis and cluster analysis were conducted for all trials.

9.
J Food Sci ; 88(6): 2368-2384, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37092658

RESUMEN

Wheat flour (WF) was substituted with germinated Bambara groundnut (Vigna subterranea) flour (GBF) at different proportions (5%, 10%, 15%, 20%, 25%, and 30%) and used in the preparation of bread. The dough mixing, pasting, and gelatinization properties of the blends were evaluated as well as the nutritional quality, in vitro starch digestibility, phytochemical constituents, antioxidant potential, color, texture, and sensory properties of breads. All the wheat dough containing GBF had higher water absorption capacity, gelatinization temperatures, dough development time, low peak, and setback viscosities. The composite breads had significantly higher dietary fiber, minerals, protein digestibility, corrected amino acid scores, resistant starch, slowly digestible starch, total phenolics, total flavonoids, and antioxidant activities and caused significant reduction in rapidly digestible starch content. The addition of up to 15% GBF had no significant impact on the specific volume of wheat bread. Substitution of WF with GBF influenced color and texture properties of bread. Wheat bread supplemented with 20% GBF had significantly higher scores in taste, aroma, and overall acceptability. This study demonstrated the potential of GBF as a functional ingredient in bread making. PRACTICAL APPLICATION: This study provides a suitable possibility of partial substitution of wheat flour with germinated Bambara groundnut, to develop functional and acceptable bread. The dough mixing and pasting results in this study would add to knowledge on the dough handling characteristics as there is limited information regarding the mixing properties of wheat dough with germinated Bambara groundnut.


Asunto(s)
Harina , Vigna , Antioxidantes , Pan , Almidón/química , Triticum/química , Vigna/metabolismo
10.
Int J Food Microbiol ; 395: 110194, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37004495

RESUMEN

Almond production generates large amounts of by-products rich in polyphenols. In this study, almond skin was explored as a valuable food ingredient in bread making. To this purpose, almond skin was used to produce functional products modifying a traditional sourdough bread recipe. The doughs were prepared replacing semolina with powdered almond skin (PAS) at 5 and 10 % (w/w). Sourdough inoculum was started with a mix of lactic acid bacteria (LAB) and propagated in semolina until reaching pH 3.7. The pH of PAS added breads was higher than that of control (CTR) breads before and after fermentation. Plate counts showed a similar evolution of LAB and total mesophilic microorganisms, but members of Enterobacteriaceae and coliform were detectable in PAS doughs. Illumina data clearly showed a dominance of lactobacilli in all trials, but PAS doughs displayed the presence of Bacillus. The final bread characteristics were influenced by PAS and its addition percentage; in particular, crust and crumb colour resulted darker, the alveolation decreased and, regarding sensory attributes, odour intensity increased, while bread odour diminished. In presence of PAS, bread emissions were characterized by lower percentages of alcohols and aromatic hydrocarbons and higher percentages of the other volatile compound classes, especially terpenoids like ß-pinene, ß-myrcene and limonene than CTR trial. After in vitro simulated digestion, the final release of phytochemicals from 10 % PAS bread was almost 100 %. Thus, PAS determined an increase of the antioxidant capacity of the breads. Phytochemicals released from digested PAS-fortified bread can provide antioxidant protection in a complex biological environment such as human intestinal-like cells. Besides the positive functional properties of PAS, this work also evidenced the hygienic issues of almond skin and, in order to avoid potential risks for the human health, highlighted the need to preserve its microbiological characteristics during storage for their reuse in bread production.


Asunto(s)
Lactobacillales , Prunus dulcis , Humanos , Pan/microbiología , Antioxidantes , Lactobacillus , Triticum/microbiología , Fermentación , Grano Comestible
11.
Plants (Basel) ; 12(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903984

RESUMEN

The 'Signuredda' bean is a local genotype of pulse with particular technological characteristics, cultivated in Sicily, Italy. This paper presents the results of a study to evaluate the effects of partial substitutions of durum wheat semolina with 5%, 7.5%, and 10% of bean flour to prepare durum wheat functional breads. The physico-chemical properties and the technological quality of flours, doughs, and breads were investigated, as well as their storage process up to six days after baking. With the addition of bean flour, the proteins increased, as did the brown index, while the yellow index decreased. The water absorption and dough stability according to the farinograph increased from 1.45 in FBS 7.5%, to 1.65 in FBS 10%, for both 2020 and 2021, and from 5% to 10% supplementation for water absorption. Dough stability increased from 4.30 in FBS 5%-2021 to 4.75 in FBS 10%-2021. According to the mixograph, the mixing time also increased. The absorption of water and oil, as well as the leavening capacity, were also examined, and results highlighted an increase in the amount of water absorbed and a greater fermentation capacity. The greatest oil uptake was shown with bean flour at 10% supplementation (3.40%), while all bean flour mixes showed a water absorption of approximately 1.70%. The fermentation test showed the addition of 10% bean flour significantly increased the fermentative capacity of the dough. The color of the crumb was darker, while the crust became lighter. During the staling process, compared with the control sample, loaves with greater moisture and volume, and better internal porosity were obtained. Moreover, the loaves were extremely soft at T0 (8.0 versus 12.0 N of the control). In conclusion, the results showed an interesting potential of 'Signuredda' bean flour as a bread-making ingredient to obtain softer breads, which are better able to resist becoming stale.

12.
Foods ; 13(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38201097

RESUMEN

Gluten consumption causes several immunological and non-immunological intolerances in susceptible individuals. In this study, the dextran-producing Weissella cibaria BAL3C-5 and its derivative, the riboflavin-overproducing strain BAL3C-5 C120T, together with a commercial bakery yeast, were used to ferment gluten-free (GF)-doughs obtained from corn and rice flours at two different concentrations and supplemented with either quinoa, buckwheat, or chickpea to obtain laboratory-scale GF bread. The levels of dextran, riboflavin, and total flavins were determined in the fermented and breads. Both strains grew in fermented doughs and contributed dextran, especially to those made with corn plus quinoa (~1 g/100 g). The highest riboflavin (350-150 µg/100 g) and total flavin (2.3-1.75 mg/100 g) levels were observed with BAL3C-5 C120T, though some differences were detected between the various doughs or breads, suggesting an impact of the type of flour used. The safety assessment confirmed the lack of pathogenic factors in the bacterial strains, such as hemolysin and gelatinase activity, as well as the genetic determinants for biogenic amine production. Some intrinsic resistance to antibiotics, including vancomycin and kanamycin, was found. These results indicated the microbiological safety of both W. cibaria strains and indicated their potential application in baking to produce GF bread.

13.
Plants (Basel) ; 11(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559521

RESUMEN

A relevant amount of waste is produced in the canning industry of globe artichoke. This study proposes to use flours of artichoke waste (stems and bracts) in durum wheat bread-making, replacing the re-milled durum wheat semolina at increasing levels (5, 7.5 and 10 g/100 g). No study had evaluated this type of enrichment in durum wheat bread, widespread in the same area where artichoke waste is mostly produced. The replacement had a visible effect on the flour color, increasing a* and reducing b* and L*, and this was reflected in the color of bread crumb. The water absorption determined by farinography, dough development time and dough stability increased as the level of replacement increased (up to 71.2 g/100 g, 7.3 min and 18.4 min, respectively). The mixograph peak height and mixing time increased compared to control. The alveograph W decreased, while the P/L ratio increased. The artichoke waste-enriched breads had a lower volume (as low as 1.37 cm3/g) and were harder than control, but they did not show relevant moisture losses during five days of storage. The obtained data show therefore an interesting potential of artichoke waste flours in bread-making, but further investigations are needed for achieving improved quality features.

14.
Front Microbiol ; 13: 969460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187981

RESUMEN

Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.

15.
Front Nutr ; 9: 978831, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267909

RESUMEN

This work describes a method for deriving riboflavin overproducing strains of Weissella cibaria by exposing three strains (BAL3C-5, BAL3C-7, and BAL3C-22) isolated from dough to increasing concentrations of roseoflavin. By this procedure, we selected one mutant overproducing strain from each parental strain (BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2, respectively). Quantification of dextran and riboflavin produced by the parental and mutant strains in a defined medium lacking riboflavin and polysaccharides confirmed that riboflavin was only overproduced by the mutant strains, whereas dextran production was similar in both mutant and parental strains. The molecular basis of the riboflavin overproduction by the mutants was determined by nucleotide sequencing of their rib operons, which encode the enzymes of the riboflavin biosynthetic pathway. We detected a unique mutation in each of the overproducing strains. These mutations, which map in the sensor domain (aptamer) of a regulatory element (the so-called FMN riboswitch) present in the 5' untranslated region of the rib operon mRNA, appear to be responsible for the riboflavin-overproducing phenotype of the BAL3C-5 B2, BAL3C-7 B2, and BAL3C-22 B2 mutant strains. Furthermore, the molecular basis of dextran production by the six W. cibaria strains has been characterized by (i) the sequencing of their dsr genes encoding dextransucrases, which synthesize dextran using sucrose as substrate, and (ii) the detection of active Dsr proteins by zymograms. Finally, the parental and mutant strains were analyzed for in situ production of riboflavin and dextran during experimental bread making. The results indicate that the mutant strains were able to produce experimental wheat breads biofortified with both riboflavin and dextran and, therefore, may be useful for the manufacture of functional commercial breads.

16.
Plant Foods Hum Nutr ; 77(3): 329-339, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857200

RESUMEN

Bread is a commonly consumed staple and could be a viable medium to deliver plant-based ingredients that demonstrate health effects. This review brings together published evidence on the bioactive properties of bread formulated with plant-based ingredients. Health effects associated with the consumption of bread formulated with plant-based functional ingredients was also reviewed. Bioactive properties demonstrated by the functional ingredients fruits and vegetables, legumes, nuts and tea incorporated into bread include increased phenolic and polyphenolic content, increased antioxidant activity, and extension of bread shelf-life by impairment of lipid and protein oxidation. Acute health effects reported included appetite suppression, reduced diastolic blood pressure, improvements in glycaemia, insulinaemia and satiety effect. These metabolic effects are mainly short lived and not enough for a health claim. Longer term studies or comparison of those who consume and those who do not are needed. The incorporation of plant-based functional ingredients in bread could enhance the health-promoting effects of bread.


Asunto(s)
Pan , Fenoles , Antioxidantes/análisis , Pan/análisis , Nueces/química , Evaluación de Resultado en la Atención de Salud , Verduras
17.
J Sci Food Agric ; 102(9): 3581-3589, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34862604

RESUMEN

BACKGROUND: The interest of consumers and market and scientific research for added-value foods obtained with environmentally sustainable productive chains is increasing. Silver fir (Abies alba Mill.) needles (SFNs), often by-products of forest management and logging, represent an unexploited source of bioactive compounds. RESULTS: For the first time, SFN aqueous extract obtained through controlled hydrodynamic cavitation was used to enrich whole wheat flour bread. The first trial found that 35% SFNs extract addition was the absolute threshold of taste perception. The second trial investigated dough rheological properties and bread technological and antioxidant properties in samples enriched with 35% and 100% SFNs extract compared with the control (0% SFNs extract). SFNs extract significantly increased bread antioxidant capacity in both 35% and 100% SFN fresh breads by ~42.5% and ~87% respectively and in 100% SFNs bread samples after 72 h of storage by ~76%. Enrichment of 35% showed higher alveograph dough extensibility (~11%) and different bread texture in terms of hardness, springiness, and chewiness. Enrichment with 100% SFNs extract significantly improved dough and bread technological quality: it increased alveograph dough extensibility L (~18%), swelling index G (~8%), and flour strength W (~14%) and showed the highest increase in bread specific volume (~0.200 L kg-1 ). CONCLUSIONS: SFNs aqueous extract produced with controlled hydrodynamic cavitation appeared a valuable technical material for the manufacturing of added-value and functional breads. © 2021 Society of Chemical Industry.


Asunto(s)
Abies , Pan , Antioxidantes/química , Harina , Agujas , Triticum/química , Agua/química
18.
Foods ; 10(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34441541

RESUMEN

Physiological changes in elderly individuals (EI) can contribute to nutritional deterioration and comorbidities that reduce their quality of life. Factors such as diet can modulate some of these effects. The aim was to evaluate the functionality of foods added with Brosimum alicastrum Sw. seed flour in EI. EI (n = 23) living in nursing home conditions agreed to participate. A control stage was carried out (30 days) and subsequently, an intervention stage (30 days) was realized in which a muffin and a beverage, designed for EI, were added to the participants' their usual diet. In both stages, anthropometric parameters, body composition, nutritional status, dietary intake, sarcopenic status, cognitive and affective states, biometric parameters, and total phenolic compounds (TPC), and antioxidant capacity in foods and plasma of EI were determined. The results showed that the consumption of the foods improved the energy intake and preserved the muscle reserves of the EI. The EI gained body weight (+1.1 kg), increased their protein (+18.6 g/day; 1.5 g/kg BW/day), dietary fiber (+13.4 g/day), iron (+4.4 mg/day), zinc (+1.8 mg/day), folic acid (+83.4 µg/day) consumption while reducing their cholesterol (-66 mg/day) and sodium (-319.5 mg/day) consumption. LDL-C lipoproteins reduced (14.8%) and urea (33.1%) and BUN (33.3%) increased. The TPC increased (7.8%) in the plasma, particularly in women (10.7%). The foods improve the EI nutritional status, and this has a cardiovascular protective effect that can benefit the health of the EI.

19.
J Food Sci ; 85(8): 2286-2295, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32691422

RESUMEN

This study aimed to produce sourdough bread using an encapsulated kombucha sourdough starter culture without the addition of baker's yeast. The bioactive metabolites of kombucha sourdough starter and sourdough starter without kombucha were identified using 1 H-NMR analysis with multivariate analysis. The physical properties, including loaf volume, specific loaf volume, firmness, and water activity were determined following standard methods. The shelf life and consumer acceptability of the bread were also being evaluated. The principal component analyses showed the presence of 15 metabolites in kombucha sourdough starter. The major compounds that contributed to the differences from sourdough starter without kombucha were alpha-aminobutyric acid, alanine, acetic acid, riboflavin, pyridoxine, anserine, tryptophan, gluconic acid, and trehalose. The encapsulated kombucha sourdough starter increased the loaf volume (976.7 ± 25.2 mL) and specific loaf volume (4.38 ± 0.12 mL/g) compared to yeast bread. Thus, significant (P < 0.05) reduction was observed in the crumb firmness (116.07 ± 6.28 g) compared to traditional sourdough bread and yeast bread. The encapsulated kombucha sourdough starter extended the shelf life of bread by 5 to 10 days at room temperature. The sourdough bread prepared using the encapsulated kombucha sourdough starter demonstrated significantly (P < 0.05) higher taste and overall acceptability scores compared to the other bread. The findings indicate that the encapsulated kombucha sourdough starter is promising to produce functional sourdough bread with extended shelf life and improved quality. PRACTICAL APPLICATION: Encapsulated kombucha sourdough starter culture that appropriately refreshed can be used primarily as a dough leavening agent in the bread industry without the addition of baker's yeast. This starter culture applied in sourdough bread production extended the shelf life and improved the biological function of sourdough bread.


Asunto(s)
Pan/análisis , Comportamiento del Consumidor , Fermentación , Té de Kombucha/microbiología , Ácido Acético/metabolismo , Pan/microbiología , Fenómenos Químicos , Manipulación de Alimentos/métodos , Almacenamiento de Alimentos , Humanos , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo
20.
J Texture Stud ; 50(2): 165-171, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30575036

RESUMEN

Symbiotic bread was produced by straight dough and frozen part-baking methods using inulin as a prebiotic (0-7.5% in straight dough method and 5% in frozen part baked bread) and GanedenBC 30 as a probiotic. With addition of inulin, dough water absorption and softening reduced, but dough development time and stability time increased. Inulin prevented excessive moisture loss during bread storage and enhanced crust darkness and crumb firmness while reduced bread volume. Increasing the frozen storage time (up to 56 days) had no effect on bread moisture content, but it reduced volume and increased firmness and crust lightness. Samples produced by straight dough method had acceptable levels of probiotic (7.45, 6.45, and 7.43 log cfu/g, respectively) complying with the WHO recommendation. Frozen storage had no effect on the probiotic content of the samples and it increased to 7.35 log cfu/g (above the minimum recommended level) after re-baking and storage at room temperature. PRACTICAL APPLICATIONS: Symbiotic foods are products that contain both probiotics (useful bacteria) and prebiotics (carbohydrate source for probiotics). Development of symbiotic bread is required to add variety to the existing types of functional breads and satisfy costumers particularly those avoiding dairy products which are traditionally enriched with probiotics. Part-baked bread industry is growing rapidly around the world; however, to remain in the market it requires innovation to satisfy consumers' demand for healthy products. This research can find practical application for ordinary and part-baked bread industry to produce bread with improved health benefits and acceptable quality.


Asunto(s)
Pan/microbiología , Culinaria/métodos , Microbiología de Alimentos , Almacenamiento de Alimentos/métodos , Bacterias/clasificación , Color , Calidad de los Alimentos , Congelación , Alimentos Funcionales , India , Inulina , Probióticos , Simbiosis , Factores de Tiempo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA