Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Front Plant Sci ; 15: 1459013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290736

RESUMEN

Introduction: Fruit color significantly influences the quality of horticultural crops, which affects phytochemical diversity and consumer preferences. Despite its importance, the genetic basis of the white-colored fruit in tomatoes remains poorly understood. Methods: In this study, we demonstrate that white-fleshed tomato varieties accumulate fewer carotenoids than yellow-fleshed varieties. We developed various segregating populations by hybridizing red, yellow, and white fruit tomato cultivars. Results: Genetic analysis revealed that the white fruit color trait is controlled by a single gene that dominates both red and yellow fruits. Bulk segregant RNA sequencing provided a preliminary map of a 3.17 Mb region on chromosome 3 associated with the white color trait. Based on kompetitive allele-specific PCR (KASP) markers, we narrowed the candidate gene region to 819 kb. Within this region, we identified a 4906-bp sequence absence variation near Phytoene Synthase 1 (SlPSY1) specific to white-colored tomatoes. Genotyping of the progeny and natural populations using a single nucleotide polymorphism adjacent to this absence of variation confirmed its key role in white fruit formation. Discussion: Collectively, our findings provide insights into white fruit trait formation in tomatoes, enabling tomato breeders to precisely introduce white fruit traits for commercial exploitation.

2.
BMC Genomics ; 25(1): 784, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138573

RESUMEN

BACKGROUND: Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] (syn. Prunus pseudocerasus Lindl.) is an economically important fruiting cherry species with a diverse range of attractive colors, spanning from the lightest yellow to the darkest black purple. However, the MYB transcription factors involved in anthocyanin biosynthesis underlying fruit color variation in Chinese cherry remain unknown. RESULTS: In this study, we characterized the R2R3-MYB gene family of Chinese cherry by genome-wide identification and compared it with those of 10 Rosaceae relatives and Arabidopsis thaliana. A total of 1490 R2R3-MYBs were classified into 43 subfamilies, which included 29 subfamilies containing both Rosaceae MYBs and AtMYBs. One subfamily (S45) contained only Rosaceae MYBs, while three subfamilies (S12, S75, and S77) contained only AtMYBs. The variation in gene numbers within identical subfamilies among different species and the absence of certain subfamilies in some species indicated the species-specific expansion within MYB gene family in Chinese cherry and its relatives. Segmental and tandem duplication events primarily contributed to the expansion of Chinese cherry R2R3-CpMYBs. The duplicated gene pairs underwent purifying selection during evolution after duplication events. Phylogenetic relationships and transcript profiling revealed that CpMYB10 and CpMYB4 are involved in the regulation of anthocyanin biosynthesis in Chinese cherry fruits. Expression patterns, transient overexpression and VIGS results confirmed that CpMYB10 promotes anthocyanin accumulation in the fruit skin, while CpMYB4 acts as a repressor, inhibiting anthocyanin biosynthesis of Chinese cherry. CONCLUSIONS: This study provides a comprehensive and systematic analysis of R2R3-MYB gene family in Chinese cherry and Rosaceae relatives, and identifies two regulators, CpMYB10 and CpMYB4, involved in anthocyanin biosynthesis in Chinese cherry. These results help to develop and utilize the potential functions of anthocyanins in Chinese cherry.


Asunto(s)
Antocianinas , Familia de Multigenes , Filogenia , Factores de Transcripción , Antocianinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética , Frutas/metabolismo
3.
Plant Methods ; 20(1): 74, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783345

RESUMEN

BACKGROUND: Fruit appearance of apple (Malus domestica Borkh.) is accession-specific and one of the main criteria for consumer choice. Consequently, fruit appearance is an important selection criterion in the breeding of new cultivars. It is also used for the description of older varieties or landraces. In commercial apple production, sorting devices are used to classify large numbers of fruit from a few cultivars. In contrast, the description of fruit from germplasm collections or breeding programs is based on only a few fruit from many accessions and is mostly performed visually by pomology experts. Such visual ratings are laborious, often difficult to compare and remain subjective. RESULTS: Here we report on a morphometric device, the FruitPhenoBox, for automated fruit weighing and appearance description using computer-based analysis of five images per fruit. Recording of approximately 100 fruit from each of 15 apple cultivars using the FruitPhenoBox was rapid, with an average handling and recording time of less than eleven seconds per fruit. Comparison of fruit images from the 15 apple cultivars identified significant differences in shape index, fruit width, height and weight. Fruit shape was characteristic for each cultivar, while fruit color showed larger variation within sample sets. Assessing a subset of 20 randomly selected fruit per cultivar, fruit height, width and weight were described with a relative margin of error of 2.6%, 2.2%, and 6.2%, respectively, calculated from the mean value of all available fruit. CONCLUSIONS: The FruitPhenoBox allows for the rapid and consistent description of fruit appearance from individual apple accessions. By relating the relative margin of error for fruit width, height and weight description with different sample sizes, it was possible to determine an appropriate fruit sample size to efficiently and accurately describe the recorded traits. Therefore, the FruitPhenoBox is a useful tool for breeding and the description of apple germplasm collections.

4.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612673

RESUMEN

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Asunto(s)
Cucurbita , Frutas , Frutas/genética , Cucurbita/genética , Multiómica , Regulación hacia Abajo , Carotenoides , Glucosa
5.
Hortic Res ; 11(3): uhae004, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38464479

RESUMEN

In fruits, cuticular waxes affect fruit quality traits such as surface color at harvest and water loss during postharvest storage. This study investigated the transcriptional regulation of cuticular wax deposition in northern highbush blueberries (Vaccinium corymbosum L.) in relation to fruit water loss and surface color during ripening and postharvest storage, as well as the effects of abscisic acid (ABA)-mediated changes in cuticular wax deposition on these fruit quality traits. Total cuticular wax content (µg∙cm-2) decreased during fruit ripening and increased during postharvest storage. Transcriptome analysis revealed a transcript network for cuticular wax deposition in blueberries. Particularly, five OSC-Likes were identified as putative genes for triterpene alcohol production, with OSC-Like1 and OSC-Like2 encoding mixed amyrin synthases, OSC-Like3 encoding a lupeol synthase, and OSC-Like4 and OSC-Like5 encoding cycloartenol synthases. The expression of three CYP716A-like genes correlated to the accumulation of two triterpene acids oleanolic acid and ursolic acid, the major wax compounds in blueberries. Exogenous ABA application induced the expression of triterpenoid biosynthetic genes and the accumulation of ß-amyrin and oleanolic acid, as well as increased the ratio of oleanolic acid to ursolic acid. These changes were associated with reduced fruit water loss. The content of ß-diketones was also increased by ABA application, and this increase was associated with increased fruit lightness (measured as L* using CIELAB Color Space by a colorimeter). This study provided key insights on the molecular basis of cuticular wax deposition and its implications on fruit quality traits in blueberries.

6.
J Exp Bot ; 75(11): 3322-3336, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38506421

RESUMEN

Modern tomatoes produce colorful mature fruits, but many wild tomato ancestors form green or gray green ripe fruits. Here, tomato cultivar 'Lvbaoshi' (LBS) that produces green ripe fruits was found to contain three recessive loci responsible for fruit development. The colorless peel of LBS fruits was caused by a 603 bp deletion in the promoter of SlMYB12. The candidate genes of the remaining two loci were identified as STAY-GREEN 1 (SlSGR1) and PHYTOENE SYNTHASE 1 (SlPSY1). SGR1 and PSY1 co-suppression by RNAi converted the pink fruits into green ripe fruits in transgenic plants. An amino acid change in PSY1 and a deletion in the promoter of SGR1 were also identified in several wild tomatoes bearing green or gray ripe fruits. Overexpression of PSY1 from green ripe fruit wild tomatoes in LBS plants could only partially rescue the green ripe fruit phenotype of LBS, and transgenic lines expressing ProSGR1::SGR1 from Solanum pennellii also failed to convert purple-flesh into red-flesh fruits. This work uncovers a novel regulatory mechanism by which SlMYB12, SlPSY1, and SlSGR1 control fruit color in cultivated and some wild tomato species.


Asunto(s)
Transferasas Alquil y Aril , Frutas , Geranilgeranil-Difosfato Geranilgeraniltransferasa , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Mutación , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Front Plant Sci ; 15: 1319680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444531

RESUMEN

Pigments derived from red pepper fruits are widely used in food and cosmetics as natural colorants. Nitrogen (N) is a key nutrient affecting plant growth and metabolism; however, its regulation of color-related metabolites in pepper fruit has not been fully elucidated. This study analyzed the effects of N supply (0, 250, and 400 kg N ha-1) on the growth, fruit skin color, and targeted and non-target secondary metabolites of field-grown pepper fruits at the mature red stage. Overall, 16 carotenoids were detected, of which capsanthin, zeaxanthin, and capsorubin were the dominant ones. N application at 250 kg ha-1 dramatically increased contents of red pigment capsanthin, yellow-orange zeaxanthin and ß-carotene, with optimum fruit yield. A total of 290 secondary metabolites were detected and identified. The relative content of most flavonoids and phenolic acids was decreased with increasing N supply. Correlation analysis showed that color parameters were highly correlated with N application rates, carotenoids, flavonoids, phenolic acids, lignans, and coumarins. Collectively, N promoted carotenoid biosynthesis but downregulated phenylpropanoid and flavonoid biosynthesis, which together determined the spectrum of red color expression in pepper fruit. Our results provide a better understanding of the impact of N nutrition on pepper fruit color formation and related physiology, and identification of target metabolites for enhancement of nutritional quality and consumer appeal.

8.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254533

RESUMEN

Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.

9.
Plant J ; 118(2): 469-487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180307

RESUMEN

Fruit color is one of the most important traits in peppers due to its esthetic value and nutritional benefits and is determined by carotenoid composition, resulting from diverse mutations of carotenoid biosynthetic genes. The EMS204 line, derived from an EMS mutant population, presents bright-red color, compared with the wild type Yuwolcho cultivar. HPLC analysis indicates that EMS204 fruit contains more zeaxanthin and less capsanthin and capsorubin than Yuwolcho. MutMap was used to reveal the color variation of EMS204 using an F3 population derived from a cross of EMS204 and Yuwolcho, and the locus was mapped to a 2.5-Mbp region on chromosome 2. Among the genes in the region, a missense mutation was found in ZEP (zeaxanthin epoxidase) that results in an amino acid sequence alteration (V291 → I). A color complementation experiment with Escherichia coli and ZEP in vitro assay using thylakoid membranes revealed decreased enzymatic activity of EMS204 ZEP. Analysis of endogenous plant hormones revealed a significant reduction in abscisic acid content in EMS204. Germination assays and salinity stress experiments corroborated the lower ABA levels in the seeds. Virus-induced gene silencing showed that ZEP silencing also results in bright-red fruit containing less capsanthin but more zeaxanthin than control. A germplasm survey of red color accessions revealed no similar carotenoid profiles to EMS204. However, a breeding line containing a ZEP mutation showed a very similar carotenoid profile to EMS204. Our results provide a novel breeding strategy to develop red pepper cultivars containing high zeaxanthin contents using ZEP mutations.


Asunto(s)
Capsicum , Oxidorreductasas , Capsicum/genética , Capsicum/metabolismo , Zeaxantinas/metabolismo , Frutas/metabolismo , Mutación con Pérdida de Función , Fitomejoramiento , Carotenoides/metabolismo , Xantófilas
10.
J Exp Bot ; 75(1): 204-218, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712824

RESUMEN

The degradation of chlorophyll during fruit development is essential to reveal a more 'ripe' color that signals readiness to wild dispersers of seeds and the human consumer. Here, comparative biochemical analysis of developing fruit of Actinidia deliciosa cv. Xuxiang ('XX', green-fleshed) and Actinidia chinensis cv. Jinshi No.1 ('JS', yellow-fleshed) indicated that variation in chlorophyll content is the major contributor to differences in flesh color. Four differentially expressed candidate genes were identified: the down-regulated genes AcCRD1 and AcPOR1 involved in chlorophyll biosynthesis, and the up-regulated genes AcSGR1 and AcSGR2 driving chlorophyll degradation. Prochlorophyllide and chlorophyllide, the metabolites produced by AcCRD1 and AcPOR1, progressively reduced in 'JS', but not in 'XX', indicating that chlorophyll biosynthesis was less active in yellow-fleshed fruit. AcSGR1 and AcSGR2 were verified to be involved in chlorophyll degradation, using both transient expression in tobacco and stable overexpression in kiwifruit. Furthermore, a homeobox-leucine zipper (HD-Zip II), AcHZP45, showed significantly increased expression during 'JS' fruit ripening, which led to both repressed expression of AcCRD1 and AcPOR1 and activated expression of AcSGR1 and AcSGR2. Collectively, the present study indicated that different dynamics of chlorophyll biosynthesis and degradation coordinate the changes in chlorophyll content in kiwifruit flesh, which are orchestrated by the key transcription factor AcHZP45.


Asunto(s)
Actinidia , Humanos , Actinidia/genética , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Foods ; 12(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37959080

RESUMEN

Optimum postharvest storage conditions increase the postharvest quality and shelf life of horticultural crops. The effects of forced-air precooling (FAP) and modified atmosphere packaging (MAP) on shelf life, physicochemical quality, and health-promoting properties of bell pepper (Capsicum annuum L. cv. Nagano) harvested at 90 and 50% coloring stages in May and July respectively, stored at 11 °C, 95% relative humidity were assessed. Fruits were subjected to four treatments: FAP + 30 µm polyethylene liner (FOLO); FAP-only (FOLX); 30 µm polyethylene liner-only (FXLO); and control (FXLX). The quality attributes, viz. weight loss, firmness, color, soluble solids content (SSC), soluble sugars, total phenolic content (TPC), total flavonoid content (TFC), 2,2-dephenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) were evaluated. The investigated parameters differed significantly (p < 0.05) among treatments except for soluble sugars. FOLO maintained sensory quality (weight loss, firmness, and color), physicochemical (SSC and soluble sugars), and health-promoting properties compared to other treatments during storage. The 50% coloring fruits had a huge variation between treatments than 90% coloring. The results revealed more TPC and antioxidant capacity in the 50% than in the 90% coloring fruits. The study highlights the need to consider the ideal fruit coloring stage at harvest under the effect of FAP and MAP treatments in preserving bell pepper's postharvest quality and shelf life.

12.
Plants (Basel) ; 12(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37570945

RESUMEN

Carotenoids in goji (Lycium barbarum L.) have excellent health benefits, but the underlying mechanism of carotenoid synthesis and color formation in goji fruit ripening is still unclear. The present study uses transcriptomics and metabolomics to investigate carotenoid biosynthesis and color formation differences in N1 (red fruit) and N1Y (yellow fruit) at three stages of ripening. Twenty-seven carotenoids were identified in N1 and N1Y fruits during the M1, M2, and M3 periods, with the M2 and M3 periods being critical for the difference in carotenoid and color between N1 and N1Y fruit. Weighted gene co-expression network analysis (WGCNA), gene trend analysis, and correlation analysis suggest that PSY1 and ZDS16 may be important players in the synthesis of carotenoids during goji fruit ripening. Meanwhile, 63 transcription factors (TFs) were identified related to goji fruit carotenoid biosynthesis. Among them, four TFs (CMB1-1, WRKY22-1, WRKY22-3, and RAP2-13-like) may have potential regulatory relationships with PSY1 and ZDS16. This work sheds light on the molecular network of carotenoid synthesis and explains the differences in carotenoid accumulation in different colored goji fruits.

13.
Funct Integr Genomics ; 23(3): 243, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453947

RESUMEN

Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.


Asunto(s)
Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Fitomejoramiento , Pigmentación/genética , Edición Génica
14.
Gene ; 880: 147602, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37422177

RESUMEN

The color of a fruit is an important contributor to the perception of its nutritional value. It is widely acknowledged that the color of sweet cherry changes obviously during ripening. Variations in anthocyanins and flavonoids account for the heterogeneous color of sweet cherries. In this study, we showed that anthocyanins but not carotenoids determine the color of sweet cherry fruits. The difference between red-yellow and red sweet cherry may be attributed to seven anthocyanins, including Cyanidin-3-O-arabinoside, Cyanidin-3,5-O-diglucoside, Cyanidin 3-xyloside, Peonidin-3-O-glucoside, Peonidin-3-O-rutinoside, Cyanidin-3-O-galactoside, Cyanidin-3-O-glucoside (Kuromanin), Peonidin-3-O-rutinoside-5-O-glucoside, Pelargonidin-3-O-glucoside and Pelargonidin-3-O-rutinoside. The content of 85 flavonols differed between red and red-yellow sweet cherries. The transcriptional analysis identified 15 key structural genes involved in the flavonoid metabolic pathway and four R2R3-MYB transcription factors. The expression level of Pac4CL, PacPAL, PacCHS1, PacCHS2, PacCHI, PacF3H1, PacF3H2, PacF3'H, PacDFR, PacANS1, PacANS2, PacBZ1 and four R2R3-MYB were positively correlated with anthocyanin content (ps < 0.05). PacFLS1, PacFLS2 and PacFLS3 expression was negatively correlated with anthocyanin content but positively correlated with flavonols content (ps < 0.05). Overall, our findings suggests that the heterogeneous expression of structural genes in the flavonoid metabolic pathway accounts for the variation in levels of final metabolites, leading to differences between red 'Red-Light' and red-yellow 'Bright Pearl'.


Asunto(s)
Antocianinas , Prunus avium , Prunus avium/genética , Prunus avium/química , Prunus avium/metabolismo , Flavonoides/metabolismo , Glucósidos/metabolismo , Flavonoles , Frutas/metabolismo
15.
Plants (Basel) ; 12(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37299134

RESUMEN

Pepper, as a vegetable crop with a wide cultivation area worldwide, besides being a significant condiment and food, also has a momentous use for chemistry, medicine, and other industries. Pepper fruits are rich in various pigments, such as chlorophyll, carotenoids, anthocyanins, and capsanthin, which have important healthcare and economic value. Since various pigments are continuously metabolized during the development of pepper fruits, peppers exhibit an abundant fruit-colored phenotype in both the mature and immature periods. In recent years, great progress has been made in the study of pepper fruit color development, but the developmental mechanisms are still unclear systematically dissected in terms of pigment, biosynthesis, and regulatory genes. The article outlines the biosynthetic pathways of three important pigments: chlorophyll, anthocyanin, and carotenoid in pepper and the various enzymes involved in these pathways. The genetics and molecular regulation mechanisms of different fruit colors in immature and mature peppers were also systematically described. The objective of this review is to provide insights into the molecular mechanisms of pigments biosynthesis in pepper. This information will provide theoretical basis for the breeding of high-quality colored pepper varieties in the future.

16.
Plants (Basel) ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176971

RESUMEN

The weather variations around the world are already having a profound impact on agricultural production. This impacts apple production and the quality of the product. Through agricultural precision, growers attempt to optimize both yield and fruit size and quality. Two experiments were conducted using field-grown "Gala" apple trees in Geneva, NY, USA, in 2021 and 2022. Mature apple trees (Malus × domestica Borkh. cv. Ultima "Gala") grafted onto G.11 rootstock planted in 2015 were used for the experiment. Our goal was to establish a relationship between stem water potential (Ψtrunk), which was continuously measured using microtensiometers, and the growth rate of apple fruits, measured continuously using dendrometers throughout the growing season. The second objective was to develop thresholds for Ψtrunk to determine when to irrigate apple trees. The economic impacts of different irrigation regimes were evaluated. Three different water regimes were compared (full irrigation, rainfed and rain exclusion to induce water stress). Trees subjected the rain-exclusion treatment were not irrigated during the whole season, except in the spring (April and May; 126 mm in 2021 and 100 mm in 2022); that is, these trees did not receive water during June, July, August and half of September. Trees subjected to the rainfed treatment received only rainwater (515 mm in 2021 and 382 mm in 2022). The fully irrigated trees received rain but were also irrigated by drip irrigation (515 mm in 2021 and 565 mm in 2022). Moreover, all trees received the same amount of water out of season in autumn and winter (245 mm in 2021 and 283 mm in 2022). The microtensiometer sensors detected differences in Ψtrunk among our treatments over the entire growing season. In both years, experimental trees with the same trunk cross-section area (TCSA) were selected (23-25 cm-2 TCSA), and crop load was adjusted to 7 fruits·cm-2 TCSA in 2021 and 8.5 fruits·cm-2 TCSA in 2022. However, the irrigated trees showed the highest fruit growth rates and final fruit weight (157 g and 70 mm), followed by the rainfed only treatment (132 g and 66 mm), while the rain-exclusion treatment had the lowest fruit growth rate and final fruit size (107 g and 61 mm). The hourly fruit shrinking and swelling rate (mm·h-1) measured with dendrometers and the hourly Ψtrunk (bar) measured with microtensiometers were correlated. We developed a logistic model to correlate Ψtrunk and fruit growth rate (g·h-1), which suggested a critical value of -9.7 bars for Ψtrunk, above which there were no negative effects on fruit growth rate due to water stress in the relatively humid conditions of New York State. A support vector machine model and a multiple regression model were developed to predict daytime hourly Ψtrunk with radiation and VPD as input variables. Yield and fruit size were converted to crop value, which showed that managing water stress with irrigation during dry periods improved crop value in the humid climate of New York State.

17.
Biology (Basel) ; 12(4)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37106801

RESUMEN

The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.

18.
Front Plant Sci ; 14: 1178844, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063187
19.
Front Plant Sci ; 14: 1142757, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968382

RESUMEN

Fruit color is one of the most important traits of jujube (Ziziphus jujuba Mill.). However, the differences in the pigments of different varieties of Jujube are not well studied. In addition, the genes responsible for fruit color and their underlying molecular mechanisms remain unclear. In this study, two jujube varieties, namely "Fengmiguan" (FMG) and "Tailihong" (TLH), were considered. The metabolites from jujube fruits were investigated using ultra-high-performance liquid chromatography/tandem mass spectrometry. Transcriptome was used to screen anthocyanin regulatory genes. The gene function was confirmed by overexpression and transient expression experiments. The gene expression was analyzed by quantitative reverse transcription polymerase chain reaction analyses and subcellular localization. Yeast-two-hybrid and bimolecular fluorescence complementation were used to screen and identify the interacting protein. These cultivars differed in color owing to their respective anthocyanin accumulation patterns. Three and seven types of anthocyanins were found in FMG and TLH, respectively, which played a key role in the process of fruit coloration. ZjFAS2 positively regulates anthocyanin accumulation. The expression profile of ZjFAS2 exhibited its different expression trends in different tissues and varieties. Subcellular localization experiments showed that ZjFAS2 was localized to the nucleus and membrane. A total of 36 interacting proteins were identified, and the possibility of ZjFAS2 interacting with ZjSHV3 to regulate jujube fruit coloration was studied. Herein, we investigated the role of anthocyanins in the different coloring patterns of the jujube fruits and provided a foundation for elucidating the molecular mechanism underlying jujube fruit coloration.

20.
Curr Opin Biotechnol ; 79: 102872, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621222

RESUMEN

Fruit quality directly impacts fruit marketability and consumer acceptance. Breeders have focused on fruit quality traits to extend shelf life, primarily through fruit texture, but, in some cases, have neglected other qualities such as flavor and nutrition. In recent years, integrative biotechnology and consumer-minded approaches have surfaced, aiding in the development of flavorful, long-lasting fruit. Here, we discussed how specific transcription factors and hormones involved in fruit ripening can be targeted to generate high-quality fruit through traditional breeding and bioengineering. We highlight regulators that can be used to generate novel-colored fruit or biofortify fresh produce with health-promoting nutrients, such as vitamin C. Overall, we argue that addressing grower and industry needs must be balanced with consumer-based traits.


Asunto(s)
Biotecnología , Frutas , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA