Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Food Chem ; 463(Pt 1): 141060, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241421

RESUMEN

Ion pair-based surfactant-assisted liquid-liquid microextraction with solidification of floating organic drops has been developed to extract Allura red (AR), tartrazine (TAR), and fast green (FG) prior to spectrophotometric determination. Cetyltrimethylammonium bromide (CTAB) was employed as ion-pairing agent to enhance the hydrophobic behavior of anionic dyes. 1-undecanol and ethanol were used as the extraction and dispersion solvents, respectively. The dyes were quantitatively extracted in the presence of KCl (0.15 mol L-1) at pH 4.0. The method exhibits wide linearity (15.0-1500.0 µg L-1 for AR, 35.0-2000.0 µg L-1 for TAR, and 3.0-1200.0 µg L-1 for FG) with preconcentration factors of 19.6, 20.1, and 19.9, respectively. The detection limit was 3.7. 9.5, and 0.83 µg L-1 for AR, TAR, and FG, respectively. The relative standard deviation did not exceed 2.1 %. The procedure was applied for the determination of these dyes in food samples.

2.
J Fluoresc ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227544

RESUMEN

In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 µM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.

3.
Anal Chim Acta ; 1322: 343069, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182987

RESUMEN

BACKGROUND: Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. RESULTS: The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25-600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. SIGNIFICANCE: In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples.


Asunto(s)
Colorantes Fluorescentes , Puntos Cuánticos , Quercetina , Titanio , Puntos Cuánticos/química , Quercetina/análisis , Quercetina/química , Titanio/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Análisis de los Alimentos/métodos , Espectrometría de Fluorescencia , Límite de Detección
4.
Food Chem ; 459: 140451, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029424

RESUMEN

Bisphenols threaten human health and sensitive detection is crucial. The present study aims to develop ternary composites of copper metal-organic framework (Cu-MOF) with AuAg microstructures. The composite structure was formed by a galvanic displacement reaction and confirmed using SEM. A binder-free catalyst was used to study the electrochemical redox reaction of bisphenol A (BPA) and bisphenol S (BPS); an irreversible cyclic voltammetric signal at +0.70 V and + 0.91 V (vs. Ag/AgCl), in the dynamic range of 20 nM to 2.0 mM, and 10 nM to 1.0 mM, with limits of detection of 2.9 nM, and 3.2 nM (S/N = 3) was obtained. Practical analysis was applied to frozen tomatoes, tuna fish, milk powder, PET bottles, raw milk, and urine samples with a recovery rate of 94.00-100.80% (n = 3). Voltammetric results were validated using HPLC detection with high precision. The sensor is a promising alternative platform for measuring BPA in food samples.


Asunto(s)
Compuestos de Bencidrilo , Técnicas Electroquímicas , Contaminación de Alimentos , Estructuras Metalorgánicas , Leche , Fenoles , Solanum lycopersicum , Fenoles/química , Fenoles/análisis , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/química , Contaminación de Alimentos/análisis , Técnicas Electroquímicas/instrumentación , Solanum lycopersicum/química , Estructuras Metalorgánicas/química , Leche/química , Animales , Límite de Detección , Cobre/química , Cobre/análisis , Sulfonas/química , Oro/química , Atún
5.
Microbiol Spectr ; 12(8): e0397823, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38990030

RESUMEN

It is critical to develop quick, accurate, and efficient sterilization for detecting Escherichia coli O157:H7 in order to prevent infections and outbreaks of foodborne illnesses. Herein, we established a colorimetric biosensor with sterilizing properties using copper selenide nanoparticles to detect E. coli O157:H7. The sample was mixed with magnetic nanoprobes and nanozyme probes to form a sandwich structure, and then the unbound nanozyme probes were collected by magnetic separation. Finally, the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate)-hydrogen peroxide (H2O2) reporting system was added for signal amplification. The change from colorless to green can be seen with the naked eye. Under the optimal conditions, the detection range of E. coli O157:H7 was 102-106 CFU/mL, and the detection limit was 0.35 × 102 CFU/mL. The total detection time was 80 minutes, which can be successfully applied to milk and mineral water. In addition, the colorimetric sensor can kill the target bacteria by irradiating it under a 980-nm laser for 5 minutes. In conclusion, this sensor is a promising tool for rapidly detecting foodborne pathogens and promptly eliminating bacteria. IMPORTANCE: Escherichia coli O157:H7 is a major threat to public health. At present, the detection methods for E. coli O157:H7 mainly include traditional bacterial culture, immunology (enzyme-linked immune-sorbent assay) and molecular biology techniques (polymerase chain reaction). These methods have the limitations of professional operation, waste of time and energy, and high cost. Therefore, we have developed a simple, fast, bactericidal colorimetric biosensor to detect E. coli. O157:H7. The entire process was completed in 80 minutes. The method has been successfully applied to milk and mineral water samples with satisfactory results, proving that the method is an effective method for real-time detection and inactivation of bacteria.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Escherichia coli O157 , Microbiología de Alimentos , Escherichia coli O157/aislamiento & purificación , Colorimetría/métodos , Técnicas Biosensibles/métodos , Microbiología de Alimentos/métodos , Cobre , Leche/microbiología , Animales , Nanopartículas/química , Peróxido de Hidrógeno/farmacología
6.
Talanta ; 278: 126427, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955101

RESUMEN

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.


Asunto(s)
Colorantes Fluorescentes , Formaldehído , Aparato de Golgi , Malondialdehído , Formaldehído/química , Formaldehído/análisis , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Colorantes Fluorescentes/química , Humanos , Malondialdehído/análisis , Malondialdehído/química , Límite de Detección , Análisis de los Alimentos/métodos , Células HeLa , Imagen Óptica , Hidrazinas/química , Hidrazinas/análisis , Contaminación de Alimentos/análisis
7.
J Fluoresc ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083155

RESUMEN

Nitrogen-doped carbon dots (N-CDs) were prepared by self-exothermic procedure using grasshopper powder as a single precursor. The prepared N-CDs not only have excellent fluorescence properties, but also can catalyze and enhance the ultra-weak chemiluminescence of NaHCO3-H2O2. The reaction conditions of NaHCO3-H2O2-N-CDs CL were optimized. Under the optimal experimental conditions, when AA was added to the NaHCO3-H2O2-N-CDs CL system, AA had a significant inhibitory effect on the CL intensity of NaHCO3-H2O2-N-CDs. There was a good linear relationship between the calculated lg(I0/I) and the concentration of AA (C), and the calibration curve equation was lg(I0/I) = 0.03667 C-0.00708 (µM). The established CL analysis method has a detection limit of 0.12 µM for AA and a linear range of 0-50 µM. The selectivity of CL method was evaluated, and the method was successfully applied to the determination of AA in vegetable and fruit samples. The spiked recoveries were between 88.9% and 118.9%, which indicated that the method was simple, rapid, and sensitive, and had great potential in the determination of AA in foods.

8.
Food Chem ; 457: 140071, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905827

RESUMEN

In this study, we have developed a novel, hypersensitive, and ultraselective electrochemical sensor containing thermally annealed gold-silver alloy nanoporous matrices (TA-Au-Ag-ANpM) integrated with f-MWCNTs-CPE and poly(l-serine) nanocomposites for the simultaneous detection of sulfathiazole (SFT) and sulfamethoxazole (SFM) residues in honey, beef, and egg samples. TA-Au-Ag-ANpM/f-MWCNTs-CPE/poly(l-serine) was characterized using an extensive array of analytical (UV-Vis, FT-IR, XRD, SEM, and EDX), and electrochemical (EIS, CV and SWV) techniques. It exhibited outstanding performance over a wide linear range, from 4.0 pM to 490 µM for SFT and 4.0 pM to 520 µM for SFM, with picomolar detection and quantification limits (0.53 pM and 1.75 pM for SFT, 0.41 pM and 1.35 pM for SFM, respectively). The sensor demonstrated exceptional repeatability, reproducibility, and anti-interference capability, with percentage recovery of 95.6-102.4% in food samples and RSD below 5%. Therefore, the developed sensor is an ideal tool to address the current antibiotic residue crisis in food sources.


Asunto(s)
Aleaciones , Residuos de Medicamentos , Técnicas Electroquímicas , Contaminación de Alimentos , Oro , Plata , Sulfametoxazol , Sulfatiazol , Plata/química , Oro/química , Contaminación de Alimentos/análisis , Sulfametoxazol/análisis , Técnicas Electroquímicas/instrumentación , Aleaciones/química , Residuos de Medicamentos/análisis , Residuos de Medicamentos/química , Sulfatiazol/química , Animales , Miel/análisis , Bovinos , Huevos/análisis , Nanoporos , Antibacterianos/análisis , Carne/análisis , Sulfatiazoles/química , Sulfatiazoles/análisis , Nanopartículas del Metal/química
9.
Talanta ; 278: 126445, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908139

RESUMEN

A near-infrared fluorescent "turn on" probe DTMI featuring simple skeleton was constructed easily. It undergoes a structure transformation from an A-π-A to a D-π-A framework towards SO32-. Besides, DTMI is capable of distinctive sensing sulfite with a fast response and a significant Stokes shift as well as with high sensitivity, excellent selectivity, long-term stability of fluorescence signals, and good anti-interference ability. The detection limit (LOD) of DTMI for sulfite within the linear concentration range of 0.5-10 µM is 27.39 nM. More importantly, DTMI has been favorably utilized for detecting sulfite in food samples such as red wine and vermicelli. Based on its low biotoxicity, DTMI has been successfully applied in imaging experiments involving HeLa cells, onion inner epidermal cells, and zebrafish. Therefore, the results show that the presented probe possesses potential sensing activity towards sulfite in complex biological system and food samples.


Asunto(s)
Colorantes Fluorescentes , Sulfitos , Pez Cebra , Sulfitos/análisis , Sulfitos/química , Humanos , Células HeLa , Colorantes Fluorescentes/química , Animales , Cebollas/química , Límite de Detección , Análisis de los Alimentos/métodos , Imagen Óptica/métodos , Vino/análisis , Espectrometría de Fluorescencia/métodos , Contaminación de Alimentos/análisis
10.
Food Chem ; 457: 140114, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38909453

RESUMEN

The aim of this study was to develop a practical orbital shaker-assisted magnetic solid phase extraction (OSA-MSPE) method for the determination of lead by FAAS. A new magnetic poly linoleic acid-polystyrene-polydimethylsiloxane (PSt-PLina-PDMS) hydrophobic graft copolymer was synthesized and characterized by NMR, FT-IR, SEM-EDX, DSC, TGA, BET and used as adsorbent for the extraction of Pb (II). This adsorbent can be used at least 50 times without any decrease of its adsorption properties for the adsorption and elution of analyte ions. Several analytical parameters including pH, adsorbent amount, sample volume, shaking time, etc. were optimized. Multivariate optimization was used for the investigation of different parameters. The linear range at optimum operating condition was 1.7-84 µg L-1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.5 µg L-1, 1.7 µg L-1, respectively. Intraday and interday relative standard deviation (RSD %), enhancement factor (EF) and adsorbent capacity were found as 1.9%, 3.3%, 166.7, 50 mg g-1, respectively. OSA-MSPE method was tested with certified reference materials including LGC-6010 (Hard Drinking Water), NCS ZC73032 Celery and CS-M-3 Control Sample Microelements in Mushroom Powder for the accuracy. Experimental results for lead were confirmed with certified values. Present method was successfully applied to various liquid and solid food samples. The OSA-MSPE method has some important features such as selective, sensitive, low LOD, LOQ and RSD, pre-concentration factor (PF) and high enhancement factor (EF). High tolerance limits against matrix ions were achieved.


Asunto(s)
Contaminación de Alimentos , Plomo , Poliestirenos , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Extracción en Fase Sólida/instrumentación , Contaminación de Alimentos/análisis , Plomo/aislamiento & purificación , Plomo/análisis , Plomo/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Poliestirenos/química , Adsorción , Polímeros/química , Ácido Linoleico/análisis , Ácido Linoleico/aislamiento & purificación , Ácido Linoleico/química , Dimetilpolisiloxanos/química , Límite de Detección
11.
Food Chem ; 457: 140189, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38924910

RESUMEN

In this study, a colourimetric biosensor based on bacteriophage SapYZUM13 and an aminated Mn3O4 (Mn3O4-NH2) nanozyme was constructed and evaluated for its ability to detect Staphylococcus aureus in food. The biosensor had a detection time of 20 min, with a detection limit of 2 × 101 CFU/mL and recovery rate of 92.42-106.96%, indicating its high reliability and accuracy in detecting the food pathogen. Mechanistically, SapYZUM13@Mn3O4-NH2 exhibited oxidase-mimicking capability, producing O2•- free radicals which oxidise 3,3',5,5'-tetramethylbenzidine (TMB) to yield blue-coloured oxTMB. In the presence of S. aureus, the oxidase activity decreased remarkably owing to shielding of the nanozyme active sites. Moreover, SapYZUM13@Mn3O4-NH2 could detect viable S. aureus from various sources, likely because of the special receptor-binding proteins of SapYZUM13 adsorbing to the wall teichoic acids on the S. aureus cell surface. Thus, SapYZUM13@Mn3O4-NH2 has broad application prospects for the detection of viable S. aureus in various foods.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Microbiología de Alimentos , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Colorimetría/métodos , Contaminación de Alimentos/análisis , Límite de Detección , Óxidos/química
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124640, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38906062

RESUMEN

Hydrogen sulfide (H2S) is a pungent gas that is one of the key mediators of signal transduction in biological systems, and its presence is related to the freshness of some protein foods. Using phenothiazine derivatives as fluorophores and 2, 4-dinitrobenzene sulfonate (DNBS) fragments as reaction groups, a near-infrared (NIR) probe WX-HS for H2S identification was designed. With the addition of H2S, WX-HS appeared a strong fluorescence signal at 660 nm with short reaction time (90 s) and high sensitivity, and fluorescence state change from non-fluorescent to orange-red. In addition, WX-HS could effectively detect H2S produced during food oxidation. Based on its low cytotoxicity, the WX-HS probe further enabled the detection and imaging of H2S in A549 cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Células A549 , Análisis de los Alimentos/métodos , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta/métodos
13.
Front Chem ; 12: 1423666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867762

RESUMEN

Food safety is the basis for ensuring human survival and development. The threat of heavy metal ions to food safety has become a social concern with the rapid growth of the economy and the accompanying environmental pollution. Some heavy metal ions are highly toxic even at trace levels and pose significant health risks to humans. Therefore, ultrasensitive detection of heavy metal ions in food samples is important. In this mini-review, recent advances in the analytical methods based on nanomaterials for detecting trace heavy metal ions in food samples are summarized in three categories: electrochemical, colorimetric, and fluorescent methods. We present the features and sensing mechanisms of these three methods, along with typical examples to illustrate their application in the detection of heavy metal ions in foods. This mini-review ends with a discussion of current challenges and future prospects of these approaches for sensing heavy metal ions. The review will help readers understand the principles of these methods, thereby promoting the development of new analytical methods for the detection of heavy metal ions in food samples.

14.
Food Microbiol ; 122: 104560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839236

RESUMEN

Although bacteriophage-based biosensors hold promise for detecting Staphylococcus aureus in food products in a timely, simple, and sensitive manner, the associated targeting mechanism of the biosensors remains unclear. Herein, a colourimetric biosensor SapYZU11@ZnFe2O4, based on a broad-spectrum S. aureus lytic phage SapYZU11 and a ZnFe2O4 nanozyme, was constructed, and its capacity to detect viable S. aureus in food was evaluated. Characterisation of SapYZU11@ZnFe2O4 revealed its effective immobilisation, outstanding biological activity, and peroxidase-like capability. The peroxidase activity of SapYZU11@ZnFe2O4 significantly decreased after the addition of S. aureus, potentially due to blockage of the nanozyme active sites. Moreover, SapYZU11@ZnFe2O4 can detect S. aureus from various sources and S. aureus isolates that phage SapYZU11 could not lyse. This may be facilitated by the adsorption of the special receptor-binding proteins on the phage tail fibre and wall teichoic acid receptors of S. aureus. Besides, SapYZU11@ZnFe2O4 exhibited remarkable sensitivity and specificity when employing colourimetric techniques to rapidly determine viable S. aureus counts in food samples, with a detection limit of 0.87 × 102 CFU/mL. Thus, SapYZU11@ZnFe2O4 has broad application prospects for the detection of viable S. aureus cells on food substrates.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Contaminación de Alimentos , Microbiología de Alimentos , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Técnicas Biosensibles/métodos , Colorimetría/métodos , Contaminación de Alimentos/análisis , Fagos de Staphylococcus , Límite de Detección
15.
Talanta ; 277: 126303, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38796929

RESUMEN

The detection of antibiotics and pesticides are of great significance since their residues threaten the health of human beings by accumulation. However, most traditional solid chemical sensors are suffer from the limitations of low sensitivity and economic practicability because of the aggregating nature and unstable of solid sensors. Herein, a new luminescent sensor 1@PMMA (1, [(ZnL)·H2O]n (H2L = 5-(4-(pyridin-4-yl)benzamido)benzene-1,3-dioic acid); PMMA = poly(methyl methacrylate)) was successfully prepared. Notably, the polymer matrix provided the chemical protection for MOF particles. The as fabricated 1@PMMA was stable in milk, honey and egg as well as exhibited strong blue emission under ultraviolet light irradiation, which can act as luminescent probe for detecting antibiotics and pesticides. More interestingly, 1@PMMA exhibited visual, real-time and recyclable detection of antibiotics ornidazole (ODZ) and pesticides 2,6-dichloro-4-nitrobenzenamine (DCN) in real food samples. This work shows that the luminescent MOF-based mixed matrix membranes could be applied as good candidates for sensing analytes in practical application.


Asunto(s)
Antibacterianos , Contaminación de Alimentos , Estructuras Metalorgánicas , Plaguicidas , Antibacterianos/análisis , Estructuras Metalorgánicas/química , Plaguicidas/análisis , Contaminación de Alimentos/análisis , Zinc/análisis , Zinc/química , Polimetil Metacrilato/química , Leche/química , Mediciones Luminiscentes/métodos , Miel/análisis , Animales , Huevos/análisis , Membranas Artificiales , Análisis de los Alimentos/métodos , Límite de Detección
16.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786171

RESUMEN

Nontyphoidal Salmonella (NTS) is a cause of foodborne diarrheal diseases worldwide. Important emerging NTS serotypes that have spread as multidrug-resistant high-risk clones include S. Typhimurium monophasic variant and S. Kentucky. In this study, we isolated Salmonella in 5019 stool samples collected from patients with clinical diarrhea and 484 food samples. Antibiotic susceptibility testing and whole-genome sequencing were performed on positive strains. The detection rates of Salmonella among patients with diarrhea and food samples were 4.0% (200/5019) and 3.1% (15/484), respectively. These 215 Salmonella isolates comprised five main serotypes, namely S. Typhimurium monophasic variant, S. Typhimurium, S. London, S. Enteritidis, and S. Rissen, and were mainly resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim/sulfamethoxazole. The MDR rates of five major serotypes were 77.4%, 56.0%, 66.7%, 53.3%, and 80.0%, respectively. The most commonly acquired extended-spectrum ß-lactamase-encoding genes were blaTEM-1B, blaOXA-10, and blaCTX-M-65. The S. Typhimurium monophasic variant strains from Jiaxing City belonged to a unique clone with broad antibiotic resistance. S. Kentucky isolates showed the highest drug resistance, and all were MDR strains. The discovery of high antibiotic resistance rates in this common foodborne pathogen is a growing concern; therefore, ongoing surveillance is crucial to effectively monitor this pathogen.

17.
Mikrochim Acta ; 191(6): 331, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744722

RESUMEN

A broad host range phage-based nanozyme (Fe-MOF@SalmpYZU47) was prepared for colorimetric detection of multiple Salmonella enterica strains. The isolation of a broad host range phage (SalmpYZU47) capable of infecting multiple S. enterica strains was achieved. Then, it was directly immobilized onto the Fe-MOF to prepare Fe-MOF@SalmpYZU47, exhibiting peroxidase-like activity. The peroxidase-like activity can be specifically inhibited by multiple S. enterica strains, benefiting from the broad host range capture ability of Fe-MOF@SalmpYZU47. Based on it, a colorimetric detection approach was developed for S. enterica in the range from 1.0 × 102 to 1.0 × 108 CFU mL-1, achieving a low limit of detection (LOD) of 11 CFU mL-1. The Fe-MOF@SalmpYZU47 was utilized for detecting S. enterica in authentic food samples, achieving recoveries ranging from 91.88 to 105.34%. Hence, our proposed broad host range phage-based nanozyme exhibits significant potential for application in the colorimetric detection of pathogenic bacteria.


Asunto(s)
Colorimetría , Límite de Detección , Estructuras Metalorgánicas , Salmonella enterica , Colorimetría/métodos , Salmonella enterica/aislamiento & purificación , Salmonella enterica/química , Estructuras Metalorgánicas/química , Microbiología de Alimentos/métodos , Contaminación de Alimentos/análisis , Peroxidasa/química
18.
Food Chem ; 452: 139575, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38735112

RESUMEN

Dimetridazole (DMZ) is a broad-spectrum antibiotic effective against bacterial and protozoan infections in humans and poultry farms. However, excessive DMZ intake leads to harmful effects. Thus, minimizing its environmental presence is crucial for sustaining daily life. This study presents an innovative approach to construct flower-like SnS particle decorations on a nickel metal-organic framework (Ni-MOF@SnS) as an electrocatalyst for DMZ detection. The Ni-MOF@SnS/GCE sensor exhibits exceptional electrocatalytic behavior, including a significantly reduced detection limit of 1.6 nM, extensive linear ranges from 0.01 µM to 60 µM and from 60 µM to 231 µM at lower and higher DMZ concentrations, respectively. It also shows enhanced sensitivity (0.139 µA µM-1 cm-2) and remarkable selectivity for DMZ detection using differential-pulse voltammetry (DPV). Furthermore, the proposed sensor demonstrates good recovery results with actual food samples.


Asunto(s)
Técnicas Electroquímicas , Contaminación de Alimentos , Estructuras Metalorgánicas , Níquel , Níquel/química , Níquel/análisis , Técnicas Electroquímicas/instrumentación , Estructuras Metalorgánicas/química , Contaminación de Alimentos/análisis , Límite de Detección , Animales , Antibacterianos/análisis , Antibacterianos/farmacología
19.
J Hazard Mater ; 474: 134705, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805812

RESUMEN

Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.


Asunto(s)
Anticuerpos Monoclonales , Haptenos , Herbicidas , Herbicidas/análisis , Haptenos/química , Haptenos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Límite de Detección , Oryza/química , Animales , Contaminantes Químicos del Agua/análisis , Cromatografía de Afinidad/métodos , Oro Coloide/química , Ratones , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos
20.
J Fluoresc ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647960

RESUMEN

A selective and sensitive fluorometric assay was developed for specific determination of curcumin (Cur) based on fluorescence resonance energy transfer (FRET) between molybdenum disulfide quantum dots (MoS2 QDs) and Cur. The MoS2 QDs were prepared via a one-step hydrothermal protocol using sodium molybdate dihydrate, L-cysteine (Cys) as precursors, and sodium cholate (SC) as a modification agent. The as-prepared MoS2 QDs possessed maximum fluorescence emission at 460 nm with a 20% of fluorescence quantum yield (FQY). It was found that the fluorescence of MoS2 QDs could be quantitatively quenched by Cur through FRET mechanism. Therefore, Cur could be detected in the range of 0.1-20 µg mL- 1 with a detection limit of 5 ng mL- 1. Additionally, the developed MoS2 QDs based fluorescent assay has been successfully applied for real food sample analysis with satisfactory results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA