Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Food Chem ; 463(Pt 3): 141256, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39305638

RESUMEN

This study investigated the influence of flaxseed oil cyclolinopeptides (CLs) on lipid and protein oxidation during high-fat meat digestion. Fourteen CLs were identified in flaxseed oil through UHPLC-ESI-QTOF-MS/MS, with dominant CLA, CLB, CLE, and CLM. During in vitro digestion, CLs inhibited lipid oxidation products (lipid hydroperoxide, Malondialdehyde, and 4-hydroxynonenal) and protein carbonylation. Compared to other groups, the lipid (16.28 ± 0.35) and protein (17.5 ± 0.6) oxidation was significantly inhibited, and antioxidant activity was remarkably increased when the CLs content reached 200 mg/kg. Through untargeted lipidomic analysis using Q-Exactive, it was observed that CLs mitigated the formation of oxidized triglycerides (OxTG) products and enhanced the hydrolysis of lipids to generate sphingolipid and polyunsaturated fatty-acids enriched glycerophospholipids imparting nutritional value to meat. Electron spin-resonance and fluorescence quenching showed that primary radicals such as alkyl and alkoxy radicals during high-fat meat digestion with flaxseed oil CLs significantly mitigate their formation. These findings collectively indicate that consuming CLs enriched flaxseed oil could reduce lipid oxidation and enhance the nutritional value of high-fat meat during digestion.

2.
Food Chem X ; 24: 101785, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39290756

RESUMEN

This study examines the effect of UV irradiation on the oxidation stability of Linum usitatissimum oil, presenting possible changes in the phytochemical profile due to photo-oxidation. GC-MS analysis of the oils identified 11 fatty acid compounds with a high percentage of unsaturated fatty acids, the most important of which is α-linolenic acid (ALA), known as omega-3 (48.88 %), also significant profiles of phytosterol and tcocopherol isomers rich in ß-Sitosterol and γ-tocopherols respectively. As well as physicochemical properties such as free fatty acids (FFA %), peroxide value (PV) and iodine value (IV), and nutritional indexes that determine the significant changes observed during the oxidation process, the most important of which is the progressive increase in acidity, peroxide, conjugated dienes and trienes and degrees of unsaturation over 8 h of UV exposure. High levels of carotenoids and phenolic compounds (TPC) protect and enhance oil quality in the face of irradiation, so a significantly small difference is observed between irradiated and non-irradiated oil during photo-oxidation.

3.
Mol Nutr Food Res ; : e2400199, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148171

RESUMEN

SCOPE: Ferroptosis has been demonstrated to play an important role in various tissue injuries and diseases. Flaxseed oil (FO) has been proven to have benefits for intestinal health. This study aims to explore whether FO relieved lipopolysaccharide (LPS)-induced intestinal injury through modulating ferroptosis signaling pathway. METHODS AND RESULTS: A total of 120 weaned piglets are fed diets with 3% soybean oil (SO) or 3% FO for 4 weeks. At the end of the trial, 24 piglets selected from two dietary treatment groups are used in a 2 × 2 factorial design with oil treatment (3% SO versus 3% FO) and LPS challenge (saline versus LPS). At 4 h postinjection with LPS, 24 piglets are slaughtered and intestinal samples are collected. FO improves growth performance of pigs. After LPS treatment, FO mitigates intestinal morphological damage and functional damage. Notably, FO reverses the typical ultra-morphology and biochemical indexes of ferroptosis involving glutathione, malondialdehyde, and 4-hydroxynonenal contents. Mechanistically, FO ameliorates the changes on mRNA or protein abundance of key ferroptosis signals including transferrin receptor protein 1 (TFR1), recombinant iron responsive element binding protein 2 (IREB2), FTL, HSPB1, ferritin heavy chain 1 (FTH1), ferroportin 1 (FPN1), SLC7A11, solute carrier family 3 member 2 (SLC3A2), glutathione peroxidase 4 (GPX4), and arachidonate-15-lipoxygenase (ALOX15). CONCLUSIONS: FO improves growth performance and mitigates intestinal structural and functional damage, which is involved in regulating ferroptosis signaling pathway.

4.
Food Sci Biotechnol ; 33(10): 2367-2376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39145129

RESUMEN

Reducing ability of sesame meal protein enzymatic hydrolysates (SMH) and perilla protein enzymatic hydrolysates (PMH) on the content of toxic aldehydes including acetaldehyde, formaldehyde, 2-hydroxylhexenal (HHE), and 2-hydroxyl nonenal (HNE), were evaluated in heated flaxseed oil at concentrations ranging from 0.01 to 1.0 g. Adding SMH and PMH decreased the formation of secondary oxidation products and toxic aldehydes during heating. In particular, HHE and HNE were not detected, even at 0.01 g of protein concentration. Free radical scavenging activities in heated flaxseed oil significantly increased when 1.0 g of SMH and PMH were added (p < 0.05). Some volatiles including 2-ethylpyridine, pyrazines, and trimethylamine were formed or increased substantially in flaxseed oils with higher concentrations of SMH and PMH. In general, SMH showed higher antioxidative activity and reducing ability on the toxic aldehydes than PMH. Plant protein enzymatic hydrolysate could control the formation of toxic aldehydes during oxidation of ω-3 edible oil.

5.
Cells ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39056766

RESUMEN

Exposure to the neurotoxin trimethyltin (TMT) selectively induces hippocampal neuronal injury and astrocyte activation accompanied with resultant neuroinflammation, which causes severe behavioral, cognitive, and memory impairment. A large body of evidence suggests that flaxseed oil (FSO), as one of the richest sources of essential omega-3 fatty acids, i.e., α-linolenic acids (ALA), displays neuroprotective properties. Here, we report the preventive effects of dietary FSO treatment in a rat model of TMT intoxication. The administration of FSO (1 mL/kg, orally) before and over the course of TMT intoxication (a single dose, 8 mg/kg, i.p.) reduced hippocampal cell death, prevented the activation of astrocytes, and inhibited their polarization toward a pro-inflammatory/neurotoxic phenotype. The underlying protective mechanism was delineated through the selective upregulation of BDNF and PI3K/Akt and the suppression of ERK activation in the hippocampus. Pretreatment with FSO reduced cell death and efficiently suppressed the expression of inflammatory molecules. These beneficial effects were accompanied by an increased intrahippocampal content of n-3 fatty acids. In vitro, ALA pretreatment prevented the TMT-induced polarization of cultured astrocytes towards the pro-inflammatory spectrum. Together, these findings support the beneficial neuroprotective properties of FSO/ALA against TMT-induced neurodegeneration and accompanied inflammation and hint at a promising preventive use of FSO in hippocampal degeneration and dysfunction.


Asunto(s)
Astrocitos , Hipocampo , Aceite de Linaza , Compuestos de Trimetilestaño , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Aceite de Linaza/farmacología , Femenino , Compuestos de Trimetilestaño/toxicidad , Ratas , Fármacos Neuroprotectores/farmacología , Inflamación/patología , Inflamación/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácidos Grasos Omega-3/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Ratas Wistar
6.
Food Sci Nutr ; 12(6): 4443-4458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38873454

RESUMEN

The aim of this study is to combine flaxseed oil (FO), rich in α-linolenic acid (ALA), with Sunite sheep tail fat (STF) through a lipase-catalyzed transesterification reaction, in order to produce an edible oil with a fatty acid ratio suitable for human needs. Initially, the optimal conditions for esterification were determined using the Box-Behnken design, with the measurement criterion being the content of ALA at the sn-2 position. The results indicated that the highest content of sn-2 ALA was obtained under the conditions of using 6.8 wt% Lipozyme®RMIM as the catalyst, a reaction temperature of 57°C, a reaction time of 3.3 h, and a substrate mass ratio of 5.6:4.4 for STF and FO. This led to the rapid breaking and recombining of molecular bonds, resulting in the interesterified fat (IF) with the highest content of ALA at the sn-2 position. Comparing STF and FO, IF exhibited excellent fatty acid composition and content. Furthermore, IF had a lower melting point and crystallization temperature compared to STF, and its solid fat content decreased with increasing temperature, completely melting at temperatures above 30°C. Thus, IF is a synthesized fat with excellent properties from both animal and vegetable sources.

7.
J Dairy Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876219

RESUMEN

Nutrition and physiological state affect hepatic metabolism. Our objective was to determine if feeding flaxseed oil (∼50% C18:3n-3 cis), high oleic soybean oil (∼70% C18:1 cis-9), or milk fat (∼50% C16:0) alters hepatic expression of PC, PCK1, and PCK2 and the flow of carbons from propionate and pyruvate into the TCA cycle in preruminating calves. Male Holstein calves (n = 40) were assigned to a diet of skim milk with either: 3% milk fat (MF; n = 8), 3% flaxseed oil (Flax; n = 8), 3% high oleic soybean oil (HOSO; n = 8), 1.5% MF + 1.5% high oleic soybean oil (MF-HOSO; n = 8), or 1.5% MF + 1.5% flaxseed oil (MF-Flax; n = 8) from d 14 to d 21 postnatal. At d 21 postnatal, a liver biopsy was taken for gene expression and metabolic flux analysis. Liver explants were incubated in [U-13C] propionate and [U-13C] pyruvate to trace carbon flux through TCA cycle intermediates or with [U-14C] lactate, [1-14C] palmitic acid, or [2-14C] propionate to quantify substrate oxidation to CO2 and acid soluble products. Compared with other treatments, plasma C18:3n-3 cis was 10 times higher and C18:1 cis-9 was 3 times lower in both flax (Flax and MF-Flax) treatments. PC, PCK1, and PCK2 expression and flux of [U-13C] pyruvate as well as [U-13C] propionate were not different between treatments. PC expression was negatively correlated with the enrichment of citrate M+5 and malate M+3, and PCK2 was negatively correlated with citrate M+5, suggesting that when expression of these enzymes is increased, carbon from pyruvate enters the TCA cycle via PC mediated carboxylation, and then OAA is converted to phosphoenolpyruvate via PCK2. Acid soluble product formation and PC expression were reduced in HOSO (MF-HOSO and HOSO) treatments compared with flax (MF-Flax and Flax), indicating that fatty acids regulate PC expression and carbon flux, but that fatty acid flux control points are not connected to PC, PCK1, or PCK2. In conclusion, fatty acids regulate hepatic expression of PC, PCK1, and PCK2, and carbon flux, but the point of control is distinct.

8.
Int J Biol Macromol ; 270(Pt 1): 132154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734331

RESUMEN

Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 µm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.


Asunto(s)
Emulsiones , Lignina , Aceite de Linaza , Oxidación-Reducción , Agua , Aceite de Linaza/química , Emulsiones/química , Lignina/química , Agua/química , Viscosidad , Carbohidratos/química , Ácido alfa-Linolénico/química , Tamaño de la Partícula
9.
Ther Apher Dial ; 28(4): 534-546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726572

RESUMEN

Studies investigating the effects of flaxseed oil on lipid profiles, weight loss, and inflammatory markers have produced inconsistent results. This systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to explore the impact of flaxseed oil on these parameters in hemodialysis patients. The study protocol was registered online (PROSPERO number: CRD42023484076). The meta-analyses showed a significant decrease in triglyceride (TG) levels (WMD = -85.78 mg/dL, 95% CI: -155.24 to -16.32, I2 = 98.32%) and C-reactive protein (CRP) levels (WMD = -2.66 mg/L, 95% CI: -4.07 to -1.24, I2 = 92.26%) following consumption of flaxseed oil. Subgroup analyses revealed significant changes in LDL-C, HDL-C, and TC levels only in trials utilizing a dosage higher than 10 g per day and using ground flaxseed oil. Based on the results, flaxseed oil improves CRP and TG levels, and higher doses positively affect lipid profiles. However, it has no significant effect on anthropometric measures.


Asunto(s)
Aceite de Linaza , Lípidos , Ensayos Clínicos Controlados Aleatorios como Asunto , Diálisis Renal , Pérdida de Peso , Humanos , Aceite de Linaza/farmacología , Aceite de Linaza/administración & dosificación , Pérdida de Peso/efectos de los fármacos , Lípidos/sangre , Biomarcadores/sangre , Inflamación , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis
10.
Food Res Int ; 183: 114189, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760128

RESUMEN

Complex coacervation can be used for controlled delivery of bioactive compounds (i.e., flaxseed oil and quercetin). This study investigated the co-encapsulation of flaxseed oil and quercetin by complex coacervation using soluble pea protein (SPP) and gum arabic (GA) as shell materials, followed by innovative electrostatic spray drying (ES). The dried system was analyzed through encapsulation efficiency (EE) and yield (EY), morphological and physicochemical properties, and stability for 60 days. Small droplet size emulsions were produced by GA (in the first step of complex coacervation) due to its greater emulsifying activity than SPP. Oil EY and EE, moisture, and water activity in dried compositions ranged from 75.7 to 75.6, 76.0-73.4 %, 3.4-4.1 %, and 0.1-0.2, respectively. Spherical microcapsules were created with small and aggregated particle size but stable for 60 days. An amount of 8 % of quercetin remained in the dried coacervates after 60 days, with low hydroperoxide production. In summary, when GA is used as the emulsifier and SPP as the second biopolymer in the coacervation process, suitable coacervates for food applications are obtained, with ES being a novel alternative to obtain coacervates in powder, with improved stability for encapsulated compounds. As a result, this study helps provide a new delivery system option and sheds light on how the characteristics of biopolymers and the drying process affect coacervate formation.


Asunto(s)
Goma Arábiga , Aceite de Linaza , Tamaño de la Partícula , Quercetina , Secado por Pulverización , Electricidad Estática , Goma Arábiga/química , Quercetina/química , Aceite de Linaza/química , Cápsulas , Emulsiones/química , Desecación/métodos , Proteínas de Guisantes/química , Emulsionantes/química
11.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776363

RESUMEN

Both n-6 and n-3 fatty acids (FA) have numerous significant physiological roles for mammals. The interplay between these families of FA is of interest in companion animal nutrition due to the influence of the n-6:n-3 FA ratio on the modulation of the inflammatory response in disease management and treatment. As both human and animal diets have shifted to greater consumption of vegetable oils rich in n-6 FA, the supplementation of n-3 FA to canine, feline, and equine diets has been advocated for. Although fish oils are commonly added to supply the long-chain n-3 FA eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), a heavy reliance on this ingredient by the human, pet food, and equine supplement industries is not environmentally sustainable. Instead, sustainable sourcing of plant-based oils rich in n-3 α-linolenic acid (ALA), such as flaxseed and camelina oils, emerges as a viable option to support an optimal n-6:n-3 FA ratio. Moreover, ALA may offer health benefits that extend beyond its role as a precursor for endogenous EPA and DHA production. The following review underlines the metabolism and recommendations of n-6 and n-3 FA for dogs, cats, and horses and the ratio between them in promoting optimal health and inflammation management. Additionally, insights into both marine and plant-based n-3 FA sources will be discussed, along with the commercial practicality of using plant oils rich in ALA for the provision of n-3 FA to companion animals.


In the realm of companion animal nutrition, the balance between the n-6 and n-3 fatty acids (FA) is important. The shared metabolic pathway of these two FA families and the respective signaling molecules produced have implications for the well-being of companion animals such as dogs, cats, and even horses. The n-6:n-3 FA ratio of the diet can directly influence inflammatory responses, disease management, and overall health. Given the prevalent use of n-6 FA-rich vegetable oils in both human and animal diets, there is a growing need to supplement these animals' diets with n-3 FA. While fish oils containing the long-chain n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been the conventional choice, their overreliance is environmentally unsustainable. Plant-based oils abundant in the n-3 FA α-linolenic acid (ALA) such as flaxseed and camelina oils should be considered, especially given the health benefits of ALA that extend beyond its role as a precursor to EPA and DHA. This review examines the importance of n-3 FA and the n-6:n-3 FA ratio in companion animal diets on animal health while discussing environmentally sustainable alternatives to fish oil to supplement n-3 FA.


Asunto(s)
Alimentación Animal , Dieta , Ácidos Grasos Omega-3 , Ácidos Grasos Omega-6 , Ácido alfa-Linolénico , Animales , Perros , Caballos , Gatos , Ácidos Grasos Omega-3/metabolismo , Ácido alfa-Linolénico/metabolismo , Ácidos Grasos Omega-6/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales
12.
J Fluoresc ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602591

RESUMEN

Fluorescence spectroscopy has been employed for the compositional analysis of flaxseed oil, detection of its adulteration and investigation of the thermal effects on its molecular composition. Excitation wavelengths from 320 to 420 nm have been used to explore the valued ingredients in flaxseed oil. The emission bands of flaxseed oil centred at 390, 414, 441, 475, 515 and 673/720 nm represent vitamin K, isomers of vitamin E, carotenoids and chlorophylls, which can be used as a marker for quality analysis. Due to its high quality, it is highly prone to adulteration and in this study, detection of its adulteration with canola oil is demonstrated by applying principal component analysis. Moreover, the effects of temperature on the molecular composition of cold pressed flaxseed oil has been explored by heating them at cooking temperatures of 100, 110, 120, 130, 140, 150, 160, 170 and 180 °C, each for 30 min. On heating, the deterioration of vitamin E, carotenoids and chlorophylls occurred with an increase in the oxidation products. However, it was found that up to 140 °C, flaxseed oil retains much of its natural composition whereas up to 180 oC, it loses much of its valuable ingredients along with increase of oxidized products.

13.
Front Endocrinol (Lausanne) ; 15: 1280760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469148

RESUMEN

Background: This study was designed to explore the effects of flaxseed oil on the metaphase II (MII) oocyte rates in women with decreased ovarian reserve (DOR). Methods: The women with DOR were divided into a study group (n = 108, flaxseed oil treatment) and a control group (n = 110, no treatment). All patients were treated with assisted reproductive technology (ART). Subsequently, the ART stimulation cycle parameters, embryo transfer (ET) results, and clinical reproductive outcomes were recorded. The influencing factors affecting the MII oocyte rate were analyzed using univariate analysis and multivariate analysis. Results: Flaxseed oil reduced the recombinant human follicle-stimulating hormone (r-hFSH) dosage and stimulation time and increased the peak estradiol (E2) concentration in DOR women during ART treatment. The MII oocyte rate, fertilization rate, cleavage rate, high-quality embryo rate, and blastocyst formation rate were increased after flaxseed oil intervention. The embryo implantation rate of the study group was higher than that of the control group (p = 0.05). Additionally, the female age [odds ratio (OR): 0.609, 95% confidence interval (CI): 0.52-0.72, p < 0.01] was the hindering factor of MII oocyte rate, while anti-Müllerian hormone (AMH; OR: 100, 95% CI: 20.31-495, p < 0.01), peak E2 concentration (OR: 1.00, 95% CI: 1.00-1.00, p = 0.01), and the intake of flaxseed oil (OR: 2.51, 95% CI: 1.06-5.93, p = 0.04) were the promoting factors for MII oocyte rate. Conclusion: Flaxseed oil improved ovarian response and the quality of oocytes and embryos, thereby increasing the fertilization rate and high-quality embryo rate in DOR patients. The use of flaxseed oil was positively correlated with MII oocyte rate in women with DOR. Clinical trial number: https://www.chictr.org.cn/, identifier ChiCTR2300073785.


Asunto(s)
Aceite de Linaza , Reserva Ovárica , Femenino , Humanos , Suplementos Dietéticos , Transferencia de Embrión/métodos , Fertilización In Vitro , Aceite de Linaza/farmacología , Metafase , Oocitos
14.
Nutrients ; 16(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474847

RESUMEN

Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmß and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmß and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.


Asunto(s)
Ácidos Grasos Omega-3 , Ratones , Animales , Embarazo , Femenino , Aceite de Cártamo , Aceites de Pescado , Dieta , Ratones Endogámicos C57BL , Biomarcadores , Expresión Génica , ARN Mensajero , Ácidos Grasos
15.
Food Chem ; 448: 139026, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531298

RESUMEN

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Asunto(s)
Aceite de Linaza , Triptófano , gamma-Tocoferol , Triptófano/química , Aceite de Linaza/química , gamma-Tocoferol/química , Oxidación-Reducción , Antioxidantes/química , Espectrometría de Masas en Tándem , Lino/química
16.
Food Chem ; 448: 138988, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522295

RESUMEN

This study prepared emulsion gels by modifying ovalbumin (OVA)-flaxseed oil (FSO) emulsions with transglutaminase (TGase) and investigated their properties, structure and oxidative stability under different enzyme reaction times. Here, we found prolonged reaction times led to the transformation of α-helix and ß-turn into ß-sheet and random coil. The elasticity, hardness and water retention of the emulsion gels increased significantly, but the water-holding capacity decreased when the reaction time exceeded 4 h. Confocal laser scanning microscope (CLSM) indicated extended enzyme reaction time fostered oil droplet aggregation with proteins. Emulsion gel reduced FSO oxidation, especially after 4 h of the enzyme reaction, the peroxide value (PV) of the emulsion gel was reduced by 29.16% compared to the control. In summary, the enzyme reaction time of 4 h resulted in the formation of a dense gel structure and enhanced oxidative stability. This study provides the potential applications in functional foods and biomedical fields.


Asunto(s)
Emulsiones , Geles , Aceite de Linaza , Ovalbúmina , Oxidación-Reducción , Transglutaminasas , Ovalbúmina/química , Transglutaminasas/química , Transglutaminasas/metabolismo , Emulsiones/química , Aceite de Linaza/química , Geles/química
17.
J Food Sci Technol ; 61(4): 675-687, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38410269

RESUMEN

The thermal degradation kinetics of flaxseed oil (FSO) and moringa oil (MO) blends with soyabean oil (SOY; 80%), rice bran oil (RBO; 80%), cotton seed oil (CSO; 80%) and sunflower oil (SFO; 80%) with Rancimat equipment. There was no significant (p ≤ 0.05) difference observed in the specific gravity (SG), density (D), and refractive index (RI) values of the MO and FSO blends, while the rancidity parameters showed the opposite variations. The FTIR spectra showed absorption bands at 966 cm-1, 1097 cm-1, 1160 cm-1, 1217 cm-1, 1377 cm-1, 1464 cm-1, 1743 cm-1, 2945 cm-1, 2852 cm-1 and 3008 cm-1. Oil blends' kinetic degradation (Ea, ΔH, ΔS, A) is represented by the semilogarithmic relationship between the oxidative stability index (OSI) and temperature. The activation energy (Ea) ranged from 77.1 ± 0.21 to 106.9 ± 0.03 kJ/mol and 73.2 ± 0.01 to 104.4 ± 0.02 kJ/mol for flaxseed oil (FSO) and moringa oil (MO) blends, respectively. The enthalpy (ΔH) and entropy (ΔS) ranged from 67.3 to 121.6 kJ/mol, and - 60.2 to - 8.4 J/mol, and 63.55 to 95.59 kJ/mol and - 20.66 to - 4.11 J/mol for FSO blends and MO blends, respectively.

18.
Saudi J Biol Sci ; 31(2): 103921, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268782

RESUMEN

Carbendazim (CBZ) is a widely used fungicide that is used to control the unwanted growth of fungi on fruits and vegetables. Sixty male rats were divided into six groups, each having ten. Group one served as control, animals belonging to group two were exposed to CBZ in the measure of 200 mg/kg body weight (BW). In the third and fourth groups, rats were administered 800 mg/kg BW of Moringa oleifera (moringa oil) and Linum usitatissimum L. (flaxseed oil), plus CBZ with the same dose given to group two. Groups five and six were administered with moringa and flaxseed oils respectively for six weeks. A marked decline was seen in oxidative stress markers, reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and a rise in malondialdehyde (MDA) level in group two with severe histological disruptions. Moringa oil and flaxseed oil were used to alleviate these changes. In addition, a biocomputational molecular docking analysis of three proteins found in male rats was performed. In relation to CBZ (CID:10584007) the screened proteins namely testis-expressed protein (TX101_RAT), EPPI_RAT, and glutathione peroxidase 5 (GPX5_RAT) were docked, and their docking score were obtained (-5.9 kcal/mol), (-5.8 kcal/mol) and (-5.6 kcal/mol) respectively. By examining these interactions in 2D and 3D structures, a detailed understanding of the unique and specific binding affinity, hydrogen bonds, hydrophobic interactions, ionic bonds, and water bonds were obtained. Structure-based virtual screening (SBVS) molecular docking analysis showed that protein interaction with CBZ causes reproductive complications in protein expression and functions by hampering their normal function and blocking active sites.

19.
J Food Prot ; 87(2): 100221, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38215978

RESUMEN

Flaxseed oil is an important source of vegetable oil with a polyunsaturated fatty acid. It is significant to establish a method to quickly identify adulterated flaxseed oil. In the present study, the qualitative and quantitative analysis of phytosterol of flaxseed oil from different varieties and different production areas in the Qinghai area was first performed by gas chromatography-mass spectrometry (GC-MS) and the phytosterol standard profile of flaxseed oil was established. Then, a combination of similarity evaluation and cluster analysis was used to distinguish pure flaxseed oil from flaxseed oil adulterated with concentrations of 10-50% rapeseed oil, peanut oil, sunflower oil, and sesame oil, and discriminant analysis was used to identify the types of adulterated flaxseed oil. The results showed that similarity evaluation combined with cluster analysis can distinguish pure and adulterated flaxseed oil when the concentration of the adulterant was greater than 10%. Discriminant analysis models accurately identified the types of adulterating oil in flaxseed oil when the concentration of rapeseed, peanut, or sunflower oil was greater than 20%, and that of sesame oil was greater than 30%. This study shows that the determination of the phytosterol composition and chemometrics is a valuable tool to evaluate the purity of flaxseed oil.


Asunto(s)
Aceite de Linaza , Fitosteroles , Cromatografía de Gases y Espectrometría de Masas , Aceite de Sésamo/análisis , Aceite de Sésamo/química , Quimiometría , Aceites de Plantas , Aceite de Girasol
20.
BMC Complement Med Ther ; 24(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167049

RESUMEN

Flaxseed is an ancient commercial oil that historically has been used as a functional food to lower cholesterol levels. However, despite its longstanding treatment, there is currently a lack of scientific evidence to support its role in the management of cardiac remodeling. This study aimed to address this gap in knowledge by examining the molecular mechanism of standardized flaxseed oil in restoring cardiac remodeling in the heart toxicity vivo model. The oil fraction was purified, and the major components were standardized by qualitative and quantitative analysis. In vivo experimental design was conducted using isoproterenol ISO (85 mg/kg) twice subcutaneously within 24 h between each dose. The rats were treated with flaxseed oil fraction (100 mg/kg orally) and the same dose was used for omega 3 supplement as a positive control group. The GC-MS analysis revealed that α-linolenic acid (24.6%), oleic acid (10.5%), glycerol oleate (9.0%) and 2,3-dihydroxypropyl elaidate (7%) are the major components of oil fraction. Physicochemical analysis indicated that the acidity percentage, saponification, peroxide, and iodine values were 0.43, 188.57, 1.22, and 122.34 respectively. As compared with healthy control, ISO group-induced changes in functional cardiac parameters. After 28-day pretreatment with flaxseed oil, the results indicated an improvement in cardiac function, a decrease in apoptosis, and simultaneous prevention of myocardial fibrosis. The plasma levels of BNP, NT-pro-BNP, endothelin-1, Lp-PLA2, and MMP2, and cTnI and cTn were significantly diminished, while a higher plasma level of Topo 2B was observed. Additionally, miRNA - 1 and 29b were significantly downregulated. These findings provide novel insight into the mechanism of flaxseed oil in restoring cardiac remodeling and support its future application as a cardioprotective against heart diseases.


Asunto(s)
Aceite de Linaza , MicroARNs , Ratas , Animales , Aceite de Linaza/farmacología , Aceite de Linaza/química , Remodelación Ventricular , Apoptosis , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA