Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39120838

RESUMEN

Rare ginsenosides Rg3 and Rh2, which exhibit diverse pharmacological effects, are derivatives of protopanaxadiol (PPD). UDP-glycosyltransferases, such as the M315F variant of Bs-YjiC (Bs-YjiCm) from Bacillus subtilis and UGTPg29 from Panax ginseng, can efficiently convert PPD into Rh2 and Rh2 into Rg3, respectively. In the present study, the N178I mutation of Bs-YjiCm was introduced, resulting in an increase in Rh2 production. UDP-glycosyltransferase UGTPg29 was then engineered to improve its robustness through semi-rational design. The variant R91M/D184M/A287V/A342L, which indicated desirable stability and activity, was utilized in coupling with the N178I variant of Bs-YjiCm and sucrose synthase AtSuSy from Arabidopsis thaliana to set up a "one-pot" three-enzyme reaction for the biosynthesis of Rg3. The influential factors, including the ratio and concentration of UDP-glycosyltransferases, pH, and the concentrations of UDP, sucrose, and DMSO, were optimized. On this basis, a fed-batch strategy was adopted to achieve a Rg3 yield as high as 12.38 mM (9.72 g/L) with a final yield of 68.78% within 24 h. This work may provide promising UDP-glycosyltransferase candidates for ginsenoside biosynthesis.

2.
Biotechnol Appl Biochem ; 70(6): 1817-1829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37278155

RESUMEN

Astaxanthin is widely used in food, aquaculture, cosmetics, and pharmaceuticals due to its strong antioxidant activity and coloring ability, but its production from Phaffia rhodozyma remains the main challenge due to the high fermentation cost and low content of carotenoid. In this study, the production of carotenoids from food waste (FW) by a P. rhodozyma mutant was investigated. P. rhodozyma mutant screened by UV mutagenesis and flow cytometry could stably produce high carotenoids at 25°C, with carotenoid production (32.9 mg/L) and content (6.7 mg/g), respectively, increasing by 31.6% and 32.3% compared with 25 mg/L and 5.1 mg/g of wild strain. Interestingly, the carotenoid production reached 192.6 mg/L by feeding wet FW, which was 21% higher than batch culture. The 373 g vacuum freeze-dried products were obtained from the fermentation of 1 kg FW by P. rhodozyma, which contained 784 mg carotenoids and 111 mg astaxanthin. The protein, total amino acids, and essential amino acids content of the fermentation products were 36.6%, 40.5%, and 18.2% (w/w), respectively, and lysine-added fermentation products had the potential of high-quality protein feed source. This study provides insights for the high-throughput screening of mutants, astaxanthin production, and the development of the feed potential of FW.


Asunto(s)
Basidiomycota , Eliminación de Residuos , Citometría de Flujo , Alimento Perdido y Desperdiciado , Alimentos , Carotenoides/metabolismo , Basidiomycota/genética , Basidiomycota/metabolismo
3.
Appl Microbiol Biotechnol ; 107(1): 57-69, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36418545

RESUMEN

Successful scale-up of Bacillus subtilis culture for poly-ß-hydroxybutyrate (PHB) production was performed in 5-l stirred-tank reactor using batch, fed-batch, and two-stage culture strategies. The kinetics of biomass production, substrate consumption, and PHB production were established in the stirred tank bioreactor in all the studies. A mathematical model was developed to investigate the role of limiting substrate on overall culture metabolism. A fed-batch strategy was predicted on the basis of computer simulations, for maximum PHB production. This was performed by extrapolation of batch model for predicting the feeding rate and suitable time of feeding. Substrate inhibition was studied and the substrate inhibition terms were incorporated in the model. The maximum cell biomass concentration in batch culture (24 h) and fed-batch culture (30 h) was 1.79 ± 0.03 g/l on dry cell weight (DCW) basis and 1.66 ± 0.050 g/l on DCW basis and the corresponding PHB content was 68.71% and 85.54% of DCW, respectively. Glucose was found to be the major limiting nutrient during the bioreactor culture. A two-stage culture, where cells were first grown in stage I in LBG media containing excess carbon and thereafter in stage II in OM media, showed biomass production of 1.95 ± 0.045 g/l at 4 h and PHB production of 93.33% of DCW at 16 h. A 9% increase in growth and 25% increase in PHB yield were obtained using two-stage culture with computer-simulated feeding strategy in the 5 l reactor. Oxygen limitation was overcome in modified two-stage culture to obtain a PHB production of 98% at 30 h. KEY POINTS: • Polyhydroxybutyrate production was studied in a 5-l stirred-tank bioreactor using HPLC • Mathematical model-assisted fed-batch strategy was implemented in bioreactor • Two-stage fed-batch cultivation was implemented and PHB production was 93% of dry weight in Gram-positive bacteria.


Asunto(s)
Bacillus subtilis , Hidroxibutiratos , Bacillus subtilis/metabolismo , Medios de Cultivo/química , Hidroxibutiratos/metabolismo , Reactores Biológicos , Poliésteres/metabolismo
4.
Bioresour Technol ; 365: 128130, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252750

RESUMEN

Chlorella sorokiniana has received particular attention as a promising candidate for microalgal biomass and lutein production. In this work, heterotrophic cultivation was explored to improve the lutein production efficiency of a lutein-rich microalga C. sorokiniana FZU60. Flask cultivation results showed that the highest lutein productivity was achieved at 30°C with an initial cell concentration of 1.40 g/L. Furthermore, six types of fed-batch strategies based on nutrient composition and concentration were examined using a 5 L fermenter. Among them, ultra-high lutein production (415.93 mg/L) and productivity (82.50 mg/L/d) with lutein content of 2.57 mg/g were achieved with fed-batch 3F (i.e., pulse-feeding with concentrated urea-N medium to achieve a 3-fold nutrient concentration). The lutein production performance achieved is much higher than the reported values. This work demonstrates that heterotrophic cultivation of C. sorokiniana FZU60 with the proposed fed-batch strategy could significantly enhance the production performance and the commercial viability of microalgae-derived lutein.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Microalgas/metabolismo , Luteína , Biomasa , Reactores Biológicos
5.
Methods Mol Biol ; 2513: 243-254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781209

RESUMEN

The knowledge of certain strain-specific parameters of recombinant Pichia pastoris strains is required to be able to set up a feeding regime for fed-batch cultivations. These parameters are commonly determined either by time-consuming and labor-intensive continuous cultivations or by several, consecutive fed-batch cultivations. Here, we describe a fast method based on batch experiments with substrate pulses to extract certain strain characteristic parameters, which are required to set up a dynamic feeding strategy for P. pastoris strains based on the specific substrate uptake rate. We further describe in detail the course of actions, which have to be taken to obtain the desired dynamics during feeding.


Asunto(s)
Pichia , Saccharomycetales , Pichia/genética , Proteínas Recombinantes/genética
6.
Front Microbiol ; 13: 923664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707171

RESUMEN

As the most abundant natural aromatic resource, lignin valorization will contribute to a feasible biobased economy. Recently, biological lignin valorization has been advocated since ligninolytic microbes possess proficient funneling pathways of lignin to valuable products. In the present study, the potential to convert an actual lignin stream into polyhydroxyalkanoates (PHAs) had been evaluated using ligninolytic genome-reduced Pseudomonas putida. The results showed that the genome-reduced P. putida can grow well on an actual lignin stream to successfully yield a high PHA content and titer. The designed fermentation strategy almost eliminated the substrate effects of lignin on PHA accumulation. Employing a fed-batch strategy produced the comparable PHA contents and titers of 0.35 g/g dried cells and 1.4 g/L, respectively. The molecular mechanism analysis unveiled that P. putida consumed more small and hydrophilic lignin molecules to stimulate cell growth and PHA accumulation. Overall, the genome-reduced P. putida exhibited a superior capacity of lignin bioconversion and promote PHA accumulation, providing a promising route for sustainable lignin valorization.

7.
Front Chem ; 9: 635191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634077

RESUMEN

Upgrading of biomass derived 5-hydroxymethylfurfural (HMF) has attracted considerable interest recently. A new highly HMF-tolerant strain of Burkholderia contaminans NJPI-15 was isolated in this study, and the biocatalytic reduction of HMF into 2,5-bis(hydroxymethyl)furan (BHMF) using whole cells was reported. Co-substrate was applied to improve the BHMF yield and selectivity of this strain as well as HMF-tolerant level. The catalytic capacity of the cells can be substantially improved by Mn2+ ion. The strain exhibited good catalytic performance at a pH range of 6.0-9.0 and a temperature range of 25°C-35°C. In addition, 100 mM HMF could be reduced to BHMF by the B. contaminans NJPI-15 resting cells in presence of 70 mM glutamine and 30 mM sucrose, with a yield of 95%. In the fed-batch strategy, 656 mM BHMF was obtained within 48 h, giving a yield of 93.7%. The reported utilization of HMF to produce BHMF is a promising industrially sound biocatalytic process.

8.
Bioprocess Biosyst Eng ; 44(4): 683-700, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33471162

RESUMEN

Bioprocess development and optimization are still cost- and time-intensive due to the enormous number of experiments involved. In this study, the recently introduced model-assisted Design of Experiments (mDoE) concept (Möller et al. in Bioproc Biosyst Eng 42(5):867, https://doi.org/10.1007/s00449-019-02089-7 , 2019) was extended and implemented into a software ("mDoE-toolbox") to significantly reduce the number of required cultivations. The application of the toolbox is exemplary shown in two case studies with Saccharomyces cerevisiae. In the first case study, a fed-batch process was optimized with respect to the pH value and linearly rising feeding rates of glucose and nitrogen source. Using the mDoE-toolbox, the biomass concentration was increased by 30% compared to previously performed experiments. The second case study was the whole-cell biocatalysis of ethyl acetoacetate (EAA) to (S)-ethyl-3-hydroxybutyrate (E3HB), for which the feeding rates of glucose, nitrogen source, and EAA were optimized. An increase of 80% compared to a previously performed experiment with similar initial conditions was achieved for the E3HB concentration.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Microbiología Industrial/instrumentación , Saccharomyces cerevisiae/metabolismo , Acetoacetatos/química , Biocatálisis , Biomasa , Reactores Biológicos , Biotecnología/métodos , Catálisis , Simulación por Computador , Fermentación , Glucosa/química , Concentración de Iones de Hidrógeno , Microbiología Industrial/métodos , Modelos Lineales , Modelos Teóricos , Método de Montecarlo , Nitrógeno/química , Probabilidad , Programas Informáticos
9.
Appl Microbiol Biotechnol ; 105(3): 1017-1030, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33443635

RESUMEN

In the pharmaceutical industry, nanobodies show promising properties for its application in serotherapy targeting the highly diffusible scorpion toxins. The production of recombinant nanobodies in Escherichia coli has been widely studied in shake flask cultures in rich medium. However, there are no upstream bioprocess studies of nanobody production in defined minimal medium and the effect of the induction temperature on the production kinetics. In this work, the effect of the temperature during the expression of the chimeric bispecific nanobody CH10-12 form, showing high scorpion antivenom potential, was studied in bioreactor cultures of E. coli. High biomass concentrations (25 g cdw/L) were achieved in fed-batch mode, and the expression of the CH10-12 nanobody was induced at temperatures 28, 29, 30, 33, and 37°C with a constant glucose feed. For the bispecific form NbF12-10, the induction was performed at 29°C. Biomass and carbon dioxide yields were reported for each culture phase, and the maintenance coefficient was obtained for each strain. Nanobody production in the CH10-12 strain was higher at low temperatures (lower than 30°C) and declined with the increase of the temperature. At 29°C, the CH10-12, NbF12-10, and WK6 strains were compared. Strains CH10-12 and NbF12-10 had a productivity of 0.052 and 0.021 mg/L/h of nanobody, respectively, after 13 h of induction. The specific productivity of the nanobodies was modeled as a function of the induction temperature and the specific growth rates. Experimental results confirm that low temperatures increase the productivity of the nanobody.Key points• Nanobodies with scorpion antivenom activity produced using two recombinant strains.• Nanobodies production was achieved in fed-batch cultures at different induction temperatures.• Low induction temperatures result in high volumetric productivities of the nanobody CH10-12.


Asunto(s)
Antivenenos , Escherichia coli , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Escherichia coli/genética , Proteínas Recombinantes/genética , Temperatura
10.
J Appl Microbiol ; 130(6): 1960-1971, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33025634

RESUMEN

AIMS: Constructing a strain with high yield of O-succinyl-l-homoserine (OSH) and improving the titre through multilevel fermentation optimization. METHODS AND RESULTS: OSH high-yielding strain was first constructed by deleting the thrB gene to block the threonine biosynthesis. Single-factor experiment was carried out, where a Plackett-Burman design was used to screen out three factors (glucose, yeast and threonine) from the original 11 factors that affected the titre of OSH. The Box-Behnken response surface method was used to optimize the fermentation conditions. Through gene editing and medium optimization, the titre of OSH increased from 7·20 to 8·70 g l-1 in 500 ml flask. Furthermore, the fermentation process and fed-batch fermentation conditions including pH, temperature, feeding strategy and feeding medium were investigated and optimized. Under the optimal conditions, the titre of OSH reached 102·5 g l-1 , which is 5·6 times higher than before (15·6 g l-1 ). CONCLUSIONS: O-succinyl-l-homoserine fermentation process was established and the combination of response surface methodology and metabolic pathway analysis effectively improved the titre of OSH. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, the titre of OSH reached the needs for industrial production and the metabolic pathway of OSH was demonstrated for further optimization.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Homoserina/análogos & derivados , Redes y Vías Metabólicas/genética , Técnicas de Cultivo Celular por Lotes , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fermentación , Glucosa/análisis , Glucosa/metabolismo , Homoserina/análisis , Homoserina/metabolismo , Ingeniería Metabólica , Treonina/análisis , Treonina/metabolismo
11.
Adv Biochem Eng Biotechnol ; 177: 29-61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797268

RESUMEN

Rising demands for biopharmaceuticals and the need to reduce manufacturing costs increase the pressure to develop productive and efficient bioprocesses. Among others, a major hurdle during process development and optimization studies is the huge experimental effort in conventional design of experiments (DoE) methods. As being an explorative approach, DoE requires extensive expert knowledge about the investigated factors and their boundary values and often leads to multiple rounds of time-consuming and costly experiments. The combination of DoE with a virtual representation of the bioprocess, called digital twin, in model-assisted DoE (mDoE) can be used as an alternative to decrease the number of experiments significantly. mDoE enables a knowledge-driven bioprocess development including the definition of a mathematical process model in the early development stages. In this chapter, digital twins and their role in mDoE are discussed. First, statistical DoE methods are introduced as the basis of mDoE. Second, the combination of a mathematical process model and DoE into mDoE is examined. This includes mathematical model structures and a selection scheme for the choice of DoE designs. Finally, the application of mDoE is discussed in a case study for the medium optimization in an antibody-producing Chinese hamster ovary cell culture process.


Asunto(s)
Modelos Teóricos , Animales , Células CHO , Cricetinae , Cricetulus , Medios de Cultivo
12.
Biotechnol Biofuels ; 13: 58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211072

RESUMEN

The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.

13.
Electron. j. biotechnol ; 38: 32-39, Mar. 2019. ilus, graf, tab
Artículo en Inglés | LILACS | ID: biblio-1051317

RESUMEN

BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatography­mass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites


Asunto(s)
Acroleína/análogos & derivados , Eugenol/metabolismo , Biotransformación , Gibberella/metabolismo , Biodegradación Ambiental , Acroleína/metabolismo , Biotecnología , Cromatografía Líquida de Alta Presión , Recursos Renovables , Técnicas de Cultivo Celular por Lotes
14.
Methods Mol Biol ; 1923: 323-333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30737748

RESUMEN

Pichia pastoris is one of the most important host organisms for the recombinant production of proteins in industrial biotechnology. A prominent promoter system for recombinant protein production in P. pastoris is the promoter of alcohol oxidase (PAOX1) which is induced by methanol, but repressed by several other carbon sources, like glucose and glycerol. Thus, typical cultivation strategies for such P. pastoris strains describe two different phases: growth on a carbon source, like glycerol, to get a high biomass concentration, followed by the induction of recombinant protein production by methanol. However, cells barely grow on methanol resulting in only moderate productivity in such bioprocesses. To enhance productivity, it is common to employ mixed substrate feeding strategies. The knowledge of certain strain-specific parameters is required to be able to set up such mixed feed fed-batch cultivations to avoid methanol accumulation and guarantee highest productivity. Here, we present an efficient strategy comprising only one experiment to determine the settings of such a mixed feed system based on the physiology of the respective yeast strain.


Asunto(s)
Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Biomasa , Metanol/metabolismo , Pichia/genética , Proteínas Recombinantes/genética
15.
Bioprocess Biosyst Eng ; 42(2): 331-344, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30446818

RESUMEN

The microalgae Scenedesmus abundans cultivated in five identical airlift photobioreactors (PBRs) in batch and fed-batch modes at the outdoor tropical condition. The microalgae strain S. abundans was found to tolerate high temperature (35-45 °C) and high light intensity (770-1690 µmol m- 2 s- 1). The highest biomass productivities were 152.5-162.5 mg L- 1 day- 1 for fed-batch strategy. The biomass productivity was drastically reduced due to photoinhibition effect at a culture temperature of > 45 °C. The lipid compositions showed fatty acids mainly in the form of saturated and monounsaturated fatty acids (> 80%) in all PBRs with Cetane number more than 51. The fed-batch strategies efficiently produced higher biomass and lipid productivities at harsh outdoor conditions. Furthermore, the microalgae also accumulated omega-3 fatty acid (C18:3) up to 14% (w/w) of total fatty acid at given outdoor condition.


Asunto(s)
Biocombustibles , Microalgas/crecimiento & desarrollo , Fotobiorreactores , Scenedesmus/crecimiento & desarrollo , Biomasa , Biotecnología/métodos , Carbono , Clorofila/química , Medios de Cultivo , Ácidos Grasos/química , Concentración de Iones de Hidrógeno , Luz , Lípidos/química , Fotosíntesis , Temperatura
16.
BMC Biotechnol ; 17(1): 55, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28633643

RESUMEN

BACKGROUND: Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-ß-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. RESULTS: Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R2 = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. CONCLUSIONS: Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris fermentation for other recombinant proteins production. Recombinant xylanases with high pH- and thermal-stability showed potential in various industrial applications.


Asunto(s)
Actinobacteria/genética , Reactores Biológicos/microbiología , Endo-1,4-beta Xilanasas/biosíntesis , Fermentación/fisiología , Glicerol/metabolismo , Metanol/metabolismo , Pichia/fisiología , Actinobacteria/enzimología , Técnicas de Cultivo Celular por Lotes , Recuento de Células , Proliferación Celular/fisiología , Medios de Cultivo/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/aislamiento & purificación , Activación Enzimática , Mejoramiento Genético/métodos , Pichia/clasificación , Pichia/citología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie
17.
Bioresour Technol ; 235: 12-17, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28351727

RESUMEN

Solvent water is an essential factor for high solids enzymatic hydrolysis. To investigate its effect on substrate conversion efficiency in high solids hydrolysis of sugarcane bagasse (SCB), oleyl alcohol was used to partially substitute the solvent water. The results in batch hydrolysis tests in which diverse ratio of solvent water was replaced found that the majority of the substrate was insoluble. Then high solids fed-batch hydrolysis with the reaction solution mixed with solvent water and oleyl alcohol in the ratio of 3:1 (solids concentration correspond to 24% (w/v)) was carried out at the final real solids loading of 18% (w/v). The produced sugars were found to be less than pure water system, which indicated that water played a significant role in high solids hydrolysis process, and solids effect was related to the solvent water content.


Asunto(s)
Saccharum/química , Álcalis , Celulosa/química , Hidrólisis , Solventes , Agua
18.
J Biosci Bioeng ; 123(5): 555-561, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28089580

RESUMEN

The production of glutathione (GSH) or GSH enriched yeast is still in the focus of research driven by a high industrial interest. In this study, an optimal growth rate for GSH production via Saccharomyces cerevisiae Sa-07346 was investigated. To further improve the fermentation process in a way that it is independent of lots, the influence of different WMIX medium compositions on biomass and GSH production was studied. Thereby, the fermentation medium was adjusted based on yeast's elemental composition. The resulting chemically defined fermentation medium led to high cell densities in fed-batches. Therefore, it has the potential to be applied successfully for other high cell density yeast fermentation processes. As cysteine is the key component for GSH production, different cysteine addition strategies were studied and finally, a continuous cysteine feeding was applied in the late stage of fermentation. Thereby, a GSH concentration of 1459 ± 57 mg/l was reached by continuously feeding cysteine, which meant an increase to 253% compared to the control without cysteine addition (577 mg/l GSH).


Asunto(s)
Fermentación , Glutatión/biosíntesis , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Cisteína/metabolismo , Cisteína/farmacología , Fermentación/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos
19.
J Appl Microbiol ; 122(1): 119-128, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27797429

RESUMEN

AIMS: 3-ketosteroid-Δ1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H2 O2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H2 O2 to enhance ADD production. METHODS AND RESULTS: The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg-1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksddopt -katA to eliminate the toxic effects of H2 O2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l-1 . CONCLUSIONS: This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H2 O2 by co-expressing catalase. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry.


Asunto(s)
Androstadienos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Catalasa/genética , Micobacterias no Tuberculosas/enzimología , Oxidorreductasas/genética , Proteínas Bacterianas/metabolismo , Biotransformación , Catalasa/metabolismo , Ingeniería Metabólica , Micobacterias no Tuberculosas/genética , Oxidorreductasas/metabolismo , Polienos/metabolismo
20.
Appl Biochem Biotechnol ; 178(6): 1263-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26728652

RESUMEN

S-Adenosyl-L-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications.


Asunto(s)
Genoma Fúngico , Metionina Adenosiltransferasa/genética , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Cromosomas Fúngicos , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA