Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791126

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Hígado Graso , Glutatión Transferasa , Regulación hacia Arriba , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Animales , Humanos , Ratones , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Oléico/metabolismo , Células Hep G2 , Triglicéridos/metabolismo , Isoenzimas
2.
Clin Res Hepatol Gastroenterol ; 48(6): 102364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788255

RESUMEN

BACKGROUND: Non-alcoholic fatty pancreas disease (NAFPD) can be detected using various imaging techniques, but accurately measuring the amount of fat in the pancreas remains difficult. Fatty acid binding protein-1 (FABP-1) is a marker specific to certain tissues and can aid in diagnosing NAFPD. However, this study aimed to investigate the prevalence of NAFPD among obese and non-obese people with and without diabetes mellitus (DM). Additionally, it aimed to evaluate the associated risk factors for NAFPD and the utility of the FABP-1 level as a simple, non-invasive biomarker for diagnosing NAFPD. METHODS: This study is a prospective cross-sectional study. RESULTS: Ninety-five patients were enrolled in the study, comprising 35 males and 60 females, with a mean age of 44 years and a standard deviation (SD) of 11 years. However, 26.3 % were morbidly obese, 22.1 % were severely obese, 31.6 % were obese, 12.6 % were overweight, and 7.4 % were normal. Additionally, 35.8 % had diabetes mellitus, while 26.3 % of patients had hypertension. Regarding the ultrasonographic findings, 94.7 % of the patients had fatty liver, with the majority (41.1 %) classified as grade II, followed by 38.9 % classified as grade I, and 14.7 % classified as grade III fatty liver. Among these patients, 78.9 % had fatty pancreas, with 38.9 % classified as grade II, 31.6 % classified as grade I, and 8.4 % classified as grade III fatty pancreas. The median FABP-1 level among patients with fatty pancreas was 3.3 ng/ml, which exhibited a significant fair negative correlation with total bilirubin and a fair, positive correlation with alkaline phosphatase and portal vein diameter. A statistically substantial distinction was observed between the levels of AFABP-1 and the presence or grading of the fatty pancreas (p-value = 0.048 and < 0.001, respectively). Using multivariate analysis, FABP-1 was the only significant predictor of a fatty pancreas. The receiver operating characteristic (ROC) curve analysis indicated that at a cut-off point of FABP-1 of ≤ 3.7, it had a sensitivity of 58 %, specificity of 80 %, positive predictive value (PPV) of 96.6 %, negative predictive value (NPV) of 17 %, and an area under the curve (AUC) of 0.77. CONCLUSION: NAFPD is becoming an increasingly significant challenge. FABP-1 can potentially be a straightforward and non-invasive predictor of the fatty pancreas.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Humanos , Masculino , Femenino , Adulto , Estudios Transversales , Egipto/epidemiología , Proteínas de Unión a Ácidos Grasos/sangre , Biomarcadores/sangre , Estudios Prospectivos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones , Enfermedades Pancreáticas/sangre , Prevalencia , Ultrasonografía
3.
Free Radic Biol Med ; 207: 260-271, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499886

RESUMEN

BACKGROUND AND AIMS: The functions of liver fatty acid binding protein 1 (FABP1) in the regulation of nonalcoholic fatty liver disease (NAFLD) have been previously established. However, how FABP1 expression is dynamically regulated in metabolic disorders is unclear. Previous studies have reported that ubiquitin proteasome-mediated degradation of FABP1 is involved, but the mechanism remains unknown. METHODS: Dysregulated expression of hepatic FABP1 and Derlin-1 was observed in NAFLD patients. We performed mice hepatic tissue coimmunoprecipitation based mass spectrum assays. Interaction between Derlin-1 and FABP1, and its impact on FABP1 ubiquitination status was evaluated by coimmunoprecipitation. The role of Derlin-1 in lipid deposition was tested using adenovirus-mediated overexpression in C57BL/6 mice, as well as by Derlin-1 overexpression or knockdown in HepG2 cells. RESULTS: As a subunit of the endoplasmic reticulum-associated degradation complex, Derlin-1 was negatively associated with NAFLD patients, interacted with and ubiquitinated FABP1. Derlin-1 suppressed FABP1 levels and inhibited lipid deposition through a FABP1-dependent pathway. Additionally, Trim25, an E3 ubiquitin ligase present in the endoplasmic reticulum, was recruited to promote Derlin-1-related polyubiquitylation of FABP1, thereby creating a ubiquitin-associated network for FABP1 regulation. Derlin-1 overexpression ameliorated hepatic steatosis in both C57BL/6 mice and HepG2 cells, and contributed to attenuated weight gain, lower liver weight, and visceral fat mass. CONCLUSIONS: FABP1 was degraded by Derlin-1 through ubiquitin modification. Negative regulation of FABP1 by Derlin-1 overexpression, suppressed lipid metabolism and alleviated lipid deposition in vivo and in vitro. Hence, Derlin-1 activation in hepatocytes may represent a potential therapeutic strategy for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Dieta Alta en Grasa , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Humanos
4.
Front Genet ; 14: 1056186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091779

RESUMEN

Background: Dyslipidemia is an independent predictor of ischemic stroke (IS). Genetic variations in lipid-metabolism related genes may increase the risk of IS. Fatty acid-binding protein 1 (FABP1) and fatty acid-binding protein 2 (FABP2) are lipid chaperones responsible for lipid transport and metabolism. The present study aimed to determine the association between FABP1 or FABP2 and ischemic stroke. Methods: A total of 251 participants were recruited composed of 138 patients with ischemic stroke and 113 healthy subjects. DNA was extracted from peripheral blood samples. The rs2241883 polymorphism in FABP1 and rs1799883 polymorphism in FABP2 were genotyped using polymerase chain reaction-restriction fragment length polymorphism. Generalized multifactor dimensionality reduction (GMDR) was used to find out the interaction combinations between two SNPs and environmental factors. Results: The GA genotype of FABP2 rs1799883 increased susceptibility to ischemic stroke under overdominant inheritance model (p = 0.042). After adjusting for the risk factors of IS, it was associated with a significantly higher risk of IS in the codominant inheritance model (adjust OR = 3.431, 95%CI = 1.060-11.103, p = 0.04). The interactions of FABP1 rs2241883 and FABP2 rs1799883 were not associated with IS risk (p = 0.172). Moreover, interaction analysis of two genes (rs1799883 and rs2241883) and two environmental factors (smoking and alcohol consumption) was associated with an increased risk of IS (p = 0.011). Conclusion: The GA genotype of FABP2 rs1799883, interactions between rs1799883, rs2241883 and smoking and alcohol consumption were associated with IS risk in Chinese Han populations.

5.
Life (Basel) ; 14(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276268

RESUMEN

Acute intermittent porphyria (AIP) is an inherited metabolic disorder associated with complications including kidney failure and hepatocellular carcinoma, probably caused by elevations in the porphyrin precursors porphobilinogen (PBG) and delta-aminolevulinic acid (ALA). This study explored differences in modern biomarkers for renal and hepatic damage between AIP patients and controls. Urine PBG testing, kidney injury panels, and liver injury panels, including both routine and modern biomarkers, were performed on plasma and urine samples from AIP cases and matched controls (50 and 48 matched pairs, respectively). Regarding the participants' plasma, the AIP cases had elevated kidney injury marker-1 (KIM-1, p = 0.0002), fatty acid-binding protein-1 (FABP-1, p = 0.04), and α-glutathione S-transferase (α-GST, p = 0.001) compared to the matched controls. The AIP cases with high PBG had increased FABP-1 levels in their plasma and urine compared to those with low PBG. In the AIP cases, KIM-1 correlated positively with PBG, CXCL10, CCL2, and TCC, and the liver marker α-GST correlated positively with IL-13, CCL2, and CCL4 (all p < 0.05). In conclusion, KIM-1, FABP-1, and α-GST could represent potential early indicators of renal and hepatic damage in AIP, demonstrating associations with porphyrin precursors and inflammatory markers.

6.
Int J Biol Sci ; 18(14): 5438-5458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147466

RESUMEN

Immunoglobulin A nephropathy (IgAN) is the commonest primary glomerulonephritis, and a major cause of end-stage renal disease; however, its pathogenesis requires elucidation. Here, a hub gene, FABP1, and signaling pathway, PPARα, were selected as key in IgAN pathogenesis by combined weighted gene correlation network analysis of clinical traits and identification of differentially expressed genes from three datasets. FABP1 and PPARα levels were lower in IgAN than control kidney, and linearly positively correlated with one another, while FABP1 levels were negatively correlated with urinary albumin-to-creatinine ratio, and GPX4 levels were significantly decreased in IgAN. In human mesangial cells (HMCs), PPARα and FABP1 levels were significantly decreased after Gd-IgA1 stimulation and mitochondria appeared structurally damaged, while reactive oxygen species (ROS) and malondialdehyde (MDA) were significantly increased, and glutathione and GPX4 decreased, relative to controls. GPX4 levels were decreased, and those of ACSL4 increased on siPPARα and siFABP1 siRNA treatment. In PPARα lentivirus-transfected HMCs stimulated by Gd-IgA1, ROS, MDA, and ACSL4 were decreased; glutathione and GPX4, and immunofluorescence colocalization of PPARα and GPX4, increased; and damaged mitochondria reduced. Hence, PPARα pathway downregulation can reduce FABP1 expression, affecting GPX4 and ACSL4 levels, causing HMC ferroptosis, and contributing to IgAN pathogenesis.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Ferroptosis , Glomerulonefritis por IGA , Albúminas/metabolismo , Creatinina , Regulación hacia Abajo/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , Glutatión/metabolismo , Humanos , Inmunoglobulina A/genética , Inmunoglobulina A/metabolismo , Malondialdehído , Células Mesangiales/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo
7.
Acta Pharm Sin B ; 12(2): 558-580, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256934

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive human cancer with increasing incidence worldwide. Multiple efforts have been made to explore pharmaceutical therapies to treat HCC, such as targeted tyrosine kinase inhibitors, immune based therapies and combination of chemotherapy. However, limitations exist in current strategies including chemoresistance for instance. Tumor initiation and progression is driven by reprogramming of metabolism, in particular during HCC development. Recently, metabolic associated fatty liver disease (MAFLD), a reappraisal of new nomenclature for non-alcoholic fatty liver disease (NAFLD), indicates growing appreciation of metabolism in the pathogenesis of liver disease, including HCC, thereby suggesting new strategies by targeting abnormal metabolism for HCC treatment. In this review, we introduce directions by highlighting the metabolic targets in glucose, fatty acid, amino acid and glutamine metabolism, which are suitable for HCC pharmaceutical intervention. We also summarize and discuss current pharmaceutical agents and studies targeting deregulated metabolism during HCC treatment. Furthermore, opportunities and challenges in the discovery and development of HCC therapy targeting metabolism are discussed.

8.
Genomics ; 113(5): 3349-3356, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343676

RESUMEN

Striped catfish (Pangasianodon hypophthalmus), belonging to the Pangasiidae family, has become an economically important fish with wide cultivation in Southeast Asia. Owing to the high-fat trait, it is always considered as an oily fish. In our present study, a high-quality genome assembly of the striped catfish was generated by integration of Illumina short reads, Nanopore long reads and Hi-C data. A 731.7-Mb genome assembly was finally obtained, with a contig N50 of 3.5 Mb, a scaffold N50 of 29.5 Mb, and anchoring of 98.46% of the assembly onto 30 pseudochromosomes. The genome contained 36.9% repeat sequences, and a total 18,895 protein-coding genes were predicted. Interestingly, we identified a tandem triplication of fatty acid binding protein 1 gene (fabp1; thereby named as fabp1-1, fabp1-2 and fabp1-3 respectively), which may be related to the high fat content in striped catfish. Meanwhile, the FABP1-2 and -3 isoforms differed from FABP1-1 by several missense mutations including R126T, which may affect the fatty acid binding properties. In summary, we report a high-quality chromosome-level genome assembly of the striped catfish, which provides a valuable genetic resource for biomedical studies on the high-fat trait, and lays a solid foundation for practical aquaculture and molecular breeding of this international teleost species.


Asunto(s)
Bagres , Animales , Bagres/genética , Cromosomas/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Repetitivas de Ácidos Nucleicos
9.
Metabol Open ; 7: 100049, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015603

RESUMEN

BACKGROUND: Sodium-glucose co-transporter 2 (SGLT2) inhibitor, a new class of glucose lowering agents, has been shown to be reno-protective in diabetes. OBJECTIVE: We aimed to explore whether SGLT2 inhibitor ipragliflozin has a direct reno-protective effect on non-diabetic chronic kidney disease (CKD) in mice. METHODS: CKD mice was induced by feeding of 0.25% w/w adenine containing diet. Low dose ipragliflozin (0.03 or 0.1 mg/kg/day) was orally administered to CKD mice for 4 weeks, concomitantly with adenine containing diet. RESULTS: CKD mice exhibited increases in kidney weight/body weight ratio, plasma creatinine levels, urinary fatty acid binding protein 1 excretion and plasma interleukin-6 levels, and a decrease in hematocrit, accompanied by morphological changes such as crystal deposits in the tubules, tubular dilatation, interstitial fibrosis, and increased 8-hydroxy-2'-deoxyguanosine staining. Low dose ipragliflozin (0.03 or 0.1 mg/kg/day) did not affect either plasma glucose levels or urinary glucose excretion, while it improved levels in plasma creatinine (P < 0.05 for 0.03 mg/kg/day, P < 0.001 for 0.1 mg/kg/day), interleukin-6 (P < 0.05 for 0.1 mg/kg/day) and hematocrit (P < 0.05 for 0.1 mg/kg/day), and morphological changes dose-dependently except crystal deposit formation in the CKD mice. CONCLUSIONS: Low-dose ipragliflozin has a reno-protective effect in non-diabetic adenine-induced CKD mice, independently of plasma glucose levels and urinary glucose excretion. Low dose SGLT2 inhibitor may be a useful therapeutic option for non-diabetic CKD with the advantage of fewer adverse effects.

10.
Int J Med Sci ; 17(15): 2338-2345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922199

RESUMEN

Background: Diabetes mellitus is the leading cause of diabetic nephropathy and a major public health issue worldwide. Approximately 20-30% of patients with type 2 diabetes mellitus (T2DM) have renal impairment. Fatty acid-binding protein 1 (FABP1) is expressed in renal proximal tubule cells and released into urine in response to hypoxia caused by decreased peritubular capillary blood flow, and FABP2 is responsible for the transport of free fatty acids in the intestinal endothelium cells. There is increasing evidence that FABP1 and FABP 2 play a role in the development and progression of chronic kidney disease. The aim of this study was to investigate the relation of circulating FABP1 and FABP2 levels to nephropathy in patients with T2DM. Methods: For this study, 268 subjects with T2DM who were enrolled in a disease management program were stratified according to urinary microalbumin and serum creatinine measurements. The plasma FABP1 and FABP2 concentrations were examined by enzyme-linked immunosorbent assay. Demographic and potential metabolic confounding factors were analyzed with logistic regression to calculate the effects of FABP1 and FABP2 levels on diabetic nephropathy. Results: The FABP1 and FABP2 levels increased in parallel with the advancement of diabetic nephropathy. Increasing concentrations of FABP1 and FABP2 were independently and significantly associated with diabetic nephropathy. Multiple logistic regression analysis revealed FABP1 and FABP2 as an independent association factor for diabetic nephropathy, even after full adjustment of known biomarkers. Furthermore, receiver operating characteristic curve analysis showed that a FABP1 level of >33.8 ng/mL and a FABP2 level of >2.8 ng/mL were associated with diabetic nephropathy. Conclusion: Our results suggest that FABP1 and FABP2 may be novel biomarkers of diabetic nephropathy.


Asunto(s)
Albuminuria/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/diagnóstico , Proteínas de Unión a Ácidos Grasos/sangre , Anciano , Albuminuria/sangre , Albuminuria/etiología , Albuminuria/orina , Biomarcadores/sangre , Creatinina/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/orina , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/orina , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Índice de Severidad de la Enfermedad
11.
Int J Med Sci ; 17(2): 182-190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038102

RESUMEN

Background: Fatty acid-binding protein 1 (FABP1) (also known as liver-type fatty acid-binding protein or LFABP) is a protein that is mainly expressed in the liver, and is associated with hepatocyte injury in acute transplant rejection. Reduced levels of FABP1 in mice livers have been shown to be effective against nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the association between plasma FABP1 levels and NAFLD in patients with type 2 diabetes mellitus (T2DM). Methods: We enrolled 267 T2DM patients. Clinical and biochemical parameters were measured. The severity of NAFLD was assessed by ultrasound. FABP1 levels were determined using by enzyme-linked immunosorbent assays. Results: FABP1 levels were higher in patients with overt NAFLD, defined as more than a moderate degree of fatty liver compared to those without NAFLD. Age- and sex-adjusted analysis of FABP1 showed positive associations with body mass index (BMI), waist circumference, homeostasis model assessment estimate of ß-cell function, creatinine, and fatty liver index, but showed negative associations with albumin and estimated glomerular filtration rate (eGFR). The odds ratio (OR) for the risk of overt NAFLD with increasing levels of sex-specific FABP1 was significantly increased (OR 2.63 [95% CI 1.30-5.73] vs. 4.94 [2.25-11.48]). The OR in the second and third tertiles of FABP1 remained significant after adjustments for BMI, triglycerides, high-density lipoprotein cholesterol, HbA1C, homeostasis model assessment estimate of insulin resistance, white blood cell count, hepatic enzymes, and eGFR. Conclusion: Our results indicate that FABP1 may play a role in the pathogenesis of NAFLD in patients with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Anciano , Índice de Masa Corporal , Creatinina/sangre , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Circunferencia de la Cintura/fisiología
12.
J Lipid Res ; 59(4): 646-657, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414765

RESUMEN

Phytocannabinoids, such as Δ9-tetrahydrocannabinol (THC), bind and activate cannabinoid (CB) receptors, thereby "piggy-backing" on the same pathway's endogenous endocannabinoids (ECs). The recent discovery that liver fatty acid binding protein-1 (FABP1) is the major cytosolic "chaperone" protein with high affinity for both Δ9-THC and ECs suggests that Δ9-THC may alter hepatic EC levels. Therefore, the impact of Δ9-THC or EC treatment on the levels of endogenous ECs, such as N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), was examined in cultured primary mouse hepatocytes from WT and Fabp1 gene-ablated (LKO) mice. Δ9-THC alone or 2-AG alone significantly increased AEA and especially 2-AG levels in WT hepatocytes. LKO alone markedly increased AEA and 2-AG levels. However, LKO blocked/diminished the ability of Δ9-THC to further increase both AEA and 2-AG. In contrast, LKO potentiated the ability of exogenous 2-AG to increase the hepatocyte level of AEA and 2-AG. These and other data suggest that Δ9-THC increases hepatocyte EC levels, at least in part, by upregulating endogenous AEA and 2-AG levels. This may arise from Δ9-THC competing with AEA and 2-AG binding to FABP1, thereby decreasing targeting of bound AEA and 2-AG to the degradative enzymes, fatty acid amide hydrolase and monoacylglyceride lipase, to decrease hydrolysis within hepatocytes.


Asunto(s)
Dronabinol/efectos adversos , Endocannabinoides/metabolismo , Proteínas de Unión a Ácidos Grasos/deficiencia , Proteínas de Unión a Ácidos Grasos/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Animales , Dronabinol/farmacología , Proteínas de Unión a Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
13.
J Lipid Res ; 58(6): 1153-1165, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28411199

RESUMEN

Studies in vitro have suggested that both sterol carrier protein-2/sterol carrier protein-x (Scp-2/Scp-x) and liver fatty acid binding protein [Fabp1 (L-FABP)] gene products facilitate hepatic uptake and metabolism of lipotoxic dietary phytol. However, interpretation of physiological function in mice singly gene ablated in the Scp-2/Scp-x has been complicated by concomitant upregulation of FABP1. The work presented herein provides several novel insights: i) An 8-anilino-1-naphthalenesulfonic acid displacement assay showed that neither SCP-2 nor L-FABP bound phytol, but both had high affinity for its metabolite, phytanic acid; ii) GC-MS studies with phytol-fed WT and Fabp1/Scp-2/SCP-x gene ablated [triple KO (TKO)] mice showed that TKO exacerbated hepatic accumulation of phytol metabolites in vivo in females and less so in males. Concomitantly, dietary phytol increased hepatic levels of total long-chain fatty acids (LCFAs) in both male and female WT and TKO mice. Moreover, in both WT and TKO female mice, dietary phytol increased hepatic ratios of saturated/unsaturated and polyunsaturated/monounsaturated LCFAs, while decreasing the peroxidizability index. However, in male mice, dietary phytol selectively increased the saturated/unsaturated ratio only in TKO mice, while decreasing the peroxidizability index in both WT and TKO mice. These findings suggested that: 1) SCP-2 and FABP1 both facilitated phytol metabolism after its conversion to phytanic acid; and 2) SCP-2/SCP-x had a greater impact on hepatic phytol metabolism than FABP1.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión a Ácidos Grasos/deficiencia , Proteínas de Unión a Ácidos Grasos/genética , Técnicas de Inactivación de Genes , Hígado/metabolismo , Fitol/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Ratones , Peroxisomas/metabolismo , Ácido Fitánico/metabolismo , Especificidad por Sustrato
14.
J Infect Dis ; 215(1): 114-121, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789726

RESUMEN

BACKGROUND: Cognitive impairment persists despite suppression of plasma human immunodeficiency virus (HIV) RNA. Monocyte-related immune activation is a likely mechanism. We examined immune activation and cognition in a cohort of HIV-infected and uninfected women from the Women's Interagency HIV Study (WIHS). METHODS: Blood levels of activation markers, soluble CD163 (sCD163), soluble CD14 (sCD14), CRP, IL-6, and a gut microbial translocation marker (intestinal fatty acid binding protein (I-FABP)) were measured in 253 women (73% HIV-infected). Markers were compared to concurrent (within ± one semiannual visit) neuropsychological testing performance. RESULTS: Higher sCD163 levels were associated with worse overall performance and worse verbal learning, verbal memory, executive function, psychomotor speed, and fine motor skills (P < .05 for all comparisons). Higher sCD14 levels were associated with worse verbal learning, verbal memory, executive function, and psychomotor speed (P < .05 for all comparisons). Among women with virological suppression, sCD163 remained associated with overall performance, verbal memory, psychomotor speed, and fine motor skills, and sCD164 remained associated with executive function (P < .05 for all comparisons). CRP, IL-6, and I-FABP were not associated with worse cognitive performance. CONCLUSIONS: Monocyte activation was associated with worse cognitive performance, and associations persisted despite viral suppression. Persistent inflammatory mechanisms related to monocytes correlate to clinically pertinent brain outcomes.


Asunto(s)
Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Monocitos/inmunología , Adulto , Anciano , Antígenos CD/sangre , Antígenos de Diferenciación Mielomonocítica/sangre , Biomarcadores/sangre , Proteínas Portadoras/sangre , Trastornos del Conocimiento/virología , Proteínas de Unión a Ácidos Grasos/sangre , Femenino , Infecciones por VIH/virología , Humanos , Interleucina-6/sangre , Proteínas con Dominio LIM/sangre , Receptores de Lipopolisacáridos/sangre , Persona de Mediana Edad , Monocitos/metabolismo , Fragmentos de Péptidos/sangre , Estudios Prospectivos , Receptores de Superficie Celular/sangre , Carga Viral
15.
J Lipid Res ; 57(9): 1712-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27381048

RESUMEN

While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.


Asunto(s)
Proteínas Portadoras/genética , Ésteres del Colesterol/metabolismo , Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Lipoproteínas HDL/metabolismo , Adenoviridae/genética , Animales , Bilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Proteínas Portadoras/metabolismo , Colesterol/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Hidrólisis , Hígado/metabolismo , Ratones
16.
J Lipid Res ; 57(2): 219-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26658423

RESUMEN

Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Enterocitos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Regulación de la Expresión Génica , Humanos , Mucosa Intestinal/metabolismo , Metabolismo de los Lípidos/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
17.
Exp Ther Med ; 9(6): 2155-2158, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26136952

RESUMEN

Testicular trauma may occur due to accidental electrical injury. The aim of this study was to investigate alterations in the levels of fatty acid-binding protein 1 (FABP1) and gastrin receptor (gastrin R) in the testes following electrical injury. Sprague-Dawley rats were divided into control, fatal electrocution (220 V, 50 Hz, 60 sec) and electrical injury (220 V, 50 Hz, 60 sec) groups (n=8 per group). The animals in the fatal electrocution and electrical injury groups were deeply anesthetized with sodium pentobarbital prior to each treatment, in which the current was delivered via an anode connected to the left foreleg and a cathode to the right hindleg. The rats that survived were subsequently sacrificed by cervical dislocation. Control animals received cervical dislocation alone. Immunohistochemical analysis was performed to evaluate the protein expression of FABP1 and gastrin R in the testes. Sections were evaluated by digital image analysis. The expression levels of FABP1 and gastrin R were significantly increased following electrical injury, supported by an increase in the integrated optical density (IOD) when compared with that in the control group (P<0.05). However, no significant difference was found in FABP1 and gastrin R expression levels between the fatal electrocution and control groups. In summary, the protein expression levels of FABP1 and gastrin R were found to be significantly altered by electrical injury, suggesting that these two proteins may be important in underlying mechanisms of testicular injury during electrical injury. The findings indicate that such alterations would be reflected in abnormal testicular function.

18.
Artículo en Inglés | MEDLINE | ID: mdl-24013142

RESUMEN

The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17ß-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species.


Asunto(s)
Antagonistas de Andrógenos/farmacología , Disruptores Endocrinos/farmacología , Redes Reguladoras de Genes/efectos de los fármacos , Linurona/farmacología , Receptores Androgénicos/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología , Animales , Inteligencia Artificial , Cyprinidae , Dihidrotestosterona/farmacología , Estradiol/biosíntesis , Femenino , Flutamida/farmacología , Perfilación de la Expresión Génica , Ovario/efectos de los fármacos , Transducción de Señal , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA