Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
1.
Int J Biol Macromol ; 279(Pt 4): 135416, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245092

RESUMEN

The demand for sustainable, eco-friendly biopolymer transdermal delivery systems has increased owing to growing environmental awareness. In this study, we used aqueous counter collision (ACC), a nontoxic nanotransformation method, to convert high- and ultrahigh-molecular-weight hydrophilic macromolecules into their corresponding nanoparticles (NPs). Hyaluronic acid (HA) and crosslinked HA (CLHA) were chosen as the model compounds. Their NPs exhibited particle sizes in the range of 10-100 nm and negative zeta potentials (-20 to -30 mV). Transmission electron microscopy revealed that the NPs were nearly spherical with smooth surfaces. Fourier-transform infrared and proton nuclear magnetic resonance spectroscopy and agarose gel electrophoresis confirmed that the structures and molecular weights of HA and CLHA remained unaltered after ACC. However, the storage and loss moduli of HANPs and CLHANPs were significantly lower than those of HA and CLHA, respectively. Furthermore, the permeation of HANPs and CLHANPs in reconstructed human skin and human cadaver skin was visualized and quantified. HANPs and CLHANPs penetrated deeper into the skin, whereas HA and CLHA were mainly found in the stratum corneum. The total skin absorption (permeation and deposition) of HANPs and CLHANPs was approximately 2.952 and 5.572 times those of HA and CLHA, respectively. Furthermore, HANPs and CLHANPs exhibited resistance to enzyme and free radical degradation. Our findings reveal ACC as a promising, sustainable hydrophilic macromolecule delivery system compared with the chemical hydrolysis of HA.

2.
Mol Pharm ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265053

RESUMEN

Hot-melt extrusion (HME) is a widely used method for creating amorphous solid dispersions (ASDs) of poorly soluble drug substances, where the drug is molecularly dispersed in a solid polymer matrix. This study examines the impact of three different copovidone excipients, their reactive impurity levels, HME barrel temperature, and the distribution of colloidal silicon dioxide (SiO2) on impurity levels, stability, and drug release of ASDs and their tablets. Initial peroxide levels were higher in Kollidon VA 64 (KVA64) and Plasdone S630 (PS630) compared to Plasdone S630 Ultra (PS630U), leading to greater oxidative degradation of the drug in fresh ASD tablets. However, stability testing (50 °C, closed container, 50 °C/30% RH, open conditions) showed lower oxidative degradation impurities in ASD tablets prepared at higher barrel temperatures, likely due to greater peroxide degradation. Plasdone S630 is suitable for ASDs with drugs prone to oxidative degradation, while standard purity grades may benefit drugs susceptible to free radical degradation, as they generate fewer free radicals post-HME. ASD tablets exhibited greater physical stability than milled extrudate samples, likely due to reduced exposure to stability conditions within the tablet matrix. Including SiO2 in the extrudate composition resulted in greater physical stability of the ASD system in the tablet; however, it negatively affected chemical stability, promoting greater oxidative degradation and hydroxylation of the drug substance. No impact of the distribution of SiO2 on drug release was observed. The study also confirmed the congruent release of copovidone, the drug substance, and Tween 80 using flow NMR coupled with in-line UV/vis. This research highlights the critical roles of peroxide levels and SiO2 in influencing the dissolution and physical and chemical stability of ASDs. The findings provide valuable insights for developing stable and effective pharmaceutical formulations, emphasizing the importance of controlling reactive impurities and excipient characteristics in ASD products prepared by using HME.

3.
Int J Pharm ; 664: 124651, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39218326

RESUMEN

Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.


Asunto(s)
Composición de Medicamentos , Tecnología de Extrusión de Fusión en Caliente , Reología , Tecnología de Extrusión de Fusión en Caliente/métodos , Composición de Medicamentos/métodos , Solubilidad , Polímeros/química , Liberación de Fármacos , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Estabilidad de Medicamentos , Calor
4.
Ann Pharm Fr ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127321

RESUMEN

Cyclodextrins are enabling pharmaceutical excipients that solubilize and stabilize drugs in aqueous formulations. Cyclodextrins possess very favorable pharmacokinetic and toxicological profiles and are commonly used in marketed drug products for oral and parenteral administration. However, their use in ophthalmic products is still very limited. Cyclodextrins have a broad range of physical properties that are specifically appropriate for designing topical ophthalmic dosage forms. Additionally, both the regulatory and intellectual property environments have been cleared over the last years and should foster their use for designing new drugs for ophthalmic use.

5.
Int J Pharm ; 664: 124636, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39197798

RESUMEN

Protein therapeutics, particularly antibodies, depend on maintaining their native structures for optimal function. Hydrophobic interfaces, such as the air-water interface, can trigger protein aggregation and denaturation. While completely avoiding such interfacial exposures during manufacturing and storage is impractical, minimizing them is crucial for enhancing protein drug stability and extending shelf life. In the biologics industry, surfactants like polysorbates are commonly used as additives (excipients) to mitigate these undesirable interfacial exposures. However, polysorbates, the most prevalent choice, have recognized limitations in terms of polydispersity, purity, and stability, prompting the exploration of alternative excipients. The present study identifies poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) block copolymers as a promising alternative to polysorbates. Due to its stronger affinity for the air-water interface, PNIPAM-PEG significantly outperforms polysorbates in enhancing protein stability. This claim is supported by results from multiple tests. Accelerated dynamic light scattering (DLS) experiments demonstrate PNIPAM-PEG's exceptional efficacy in preserving IgG stability against surface-induced aggregation, surpassing conventional polysorbate excipients (Tween 80 and Tween 20) under high-temperature conditions. Additionally, circular dichroism (CD) spectroscopy results reveal conformational alterations associated with aggregation, with PNIPAM-PEG consistently demonstrates a greater protective effect by mitigating negative shifts at λ â‰… 220 nm, indicative of changes in secondary structure. Overall, this study positions PNIPAM-PEG as a promising excipient for antibody therapeutics, facilitating the development of more stable and effective biopharmaceuticals.


Asunto(s)
Resinas Acrílicas , Excipientes , Polietilenglicoles , Estabilidad Proteica , Polietilenglicoles/química , Excipientes/química , Resinas Acrílicas/química , Estabilidad de Medicamentos , Productos Biológicos/química , Inmunoglobulina G/química , Polisorbatos/química , Agregado de Proteínas
6.
Adv Mater ; : e2406618, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205536

RESUMEN

Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported. Impressively, as a UOP probe, SCC enables nondestructive detection of hardness with superb contrast (signal-to-background ratio up to 120), while exhibiting a response sensitivity to moisture that is more than 5.0 times higher than that observed in conventional fluorescence. Additionally, its applicability for hardness monitoring and high-moisture warning for tablets containing a moisture-sensitive drug, with the quality of the drug being determinable through the naked-eye visible UOP, is demonstrated. This work not only elucidates the reason for stimulative corresponding properties in SCC but also makes a major step forward in extending the potential applications of stimuli-responsive UOP materials in manufacturing high-quality and safe medicine.

7.
Pharmaceutics ; 16(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204405

RESUMEN

Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further.

8.
Int J Pharm ; 662: 124504, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39053676

RESUMEN

Pulmonary delivery of antibiotics is an effective strategy in treating bacterial lung infection for cystic fibrosis patients, by achieving high local drug concentrations and reducing overall systemic exposure compared to systemic administration. However, the inherent anatomical lung defense mechanisms, formulation characteristics, and drug-device combination determine the treatment efficacy of the aerosol delivery approach. In this study, we prepared a new tobramycin (Tobi) dry powder aerosol using excipient enhanced growth (EEG) technology and evaluated the in vitro and in vivo aerosol performance. We further established a Pseudomonas aeruginosa-induced lung infection rat model using an in-house designed novel liquid aerosolizer device. Notably, novel liquid aerosolizer yields comparable lung infection profiles despite administering 3-times lower P. aeruginosa CFU per rat in comparison to the conventional intratracheal administration. Dry powder insufflator (e.g. Penn-Century DP-4) to administer small powder masses to experimental animals is no longer commercially available. To address this gap, we developed a novel rat air-jet dry powder insufflator (Rat AJ DPI) that can emit 68-70 % of the loaded mass for 2 mg and 5 mg of Tobi-EEG powder formulations, achieving a high rat lung deposition efficiency of 79 % and 86 %, respectively. Rat AJ DPI can achieve homogenous distribution of Tobi EEG powder formulations at both loaded mass (2 mg and 5 mg) over all five lung lobes in rats. We then demonstrated that Tobi EEG formulation delivered by Rat AJ DPI can significantly decrease CFU counts in both trachea and lung lobes at 2 mg (p < 0.05) and 5 mg (p < 0.001) loaded mass compared to the untreated P. aeruginosa-infected group. Tobi EEG powder formulation delivered by the novel Rat AJ DPI showed excellent efficiencies in substantially reducing the P. aeruginosa-induced lung infection in rats.


Asunto(s)
Antibacterianos , Inhaladores de Polvo Seco , Polvos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Ratas Sprague-Dawley , Tobramicina , Animales , Tobramicina/administración & dosificación , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Administración por Inhalación , Antibacterianos/administración & dosificación , Ratas , Aerosoles , Pulmón/microbiología , Masculino , Excipientes/química
9.
Int J Pharm ; 662: 124472, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013532

RESUMEN

Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo-/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.


Asunto(s)
Excipientes , Histidina , Proteínas , Excipientes/química , Histidina/química , Proteínas/química , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Productos Biológicos/química , Humanos , Estabilidad de Medicamentos
10.
Sci Rep ; 14(1): 15106, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956156

RESUMEN

We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.


Asunto(s)
Excipientes , Polisorbatos , Excipientes/química , Polisorbatos/química , Vitamina E/química , Tensoactivos/química , Pirrolidinas/química , Simulación de Dinámica Molecular , Termodinámica , Tecnología de Extrusión de Fusión en Caliente/métodos , Compuestos de Vinilo
11.
Int J Biol Macromol ; 275(Pt 1): 133626, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964691

RESUMEN

Low-viscosity hydroxypropyl methylcellulose (HPMC) was obtained by electron beam irradiation, and its use as an excipient for improving the properties of spray dried pharmaceutical powders was investigated. The minimum molecular weight of HPMC which could maintain the capacity of encapsulation and powder modification was explored. As the irradiation dose was increased from 10 to 200 kGy, the molecular weight and viscosity of HPMC decreased linearly. However, its main structure and degrees of methoxy and hydroxypropyl substitution were not significantly affected. The irradiated HPMC could encapsulate particles during spray drying and, thus, modify powder properties. Furthermore, the water content of spray-dried powders with irradiated HPMC was lower than that with parent HPMC. After the spray-dried powder with irradiated HPMC was prepared into granules, their dissolution rate was also faster. However, in order to achieve high encapsulation, the molecular weight of HPMC should be ensured to be above 7.5 kDa. The designated low-viscosity HPMC obtained by electron beam irradiation is a suitable powder-modification material for use in spray drying, and it shows promise as a superior excipient in medicine, food, paint industries, among others.


Asunto(s)
Electrones , Derivados de la Hipromelosa , Peso Molecular , Secado por Pulverización , Derivados de la Hipromelosa/química , Viscosidad , Polvos , Tamaño de la Partícula , Excipientes/química , Agua/química
12.
AAPS PharmSciTech ; 25(6): 154, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961012

RESUMEN

Berberine is used in the treatment of metabolic syndrome and its low solubility and very poor oral bioavailability of berberine was one of the primary hurdles for its market approval. This study aimed to improve the solubility and bioavailability of berberine by preparing pellet formulations containing drug-excipient complex (obtained by solid dispersion). Berberine-excipient solid dispersion complexes were obtained with different ratios by the solvent evaporation method. The maximum saturation solubility test was performed as a key factor for choosing the optimal complex for the drug-excipient. The properties of these complexes were investigated by FTIR, DSC, XRD and dissolution tests. The obtained pellets were evaluated and compared in terms of pelletization efficiency, particle size, mechanical strength, sphericity and drug release profile in simulated media of gastric and intestine. Solid-state analysis showed complex formation between the drug and excipients used in solid dispersion. The optimal berberine-phospholipid complex showed a 2-fold increase and the optimal berberine-gelucire and berberine-citric acid complexes showed more than a 3-fold increase in the solubility of berberine compared to pure berberine powder. The evaluation of pellets from each of the optimal complexes showed that the rate and amount of drug released from all pellet formulations in the simulated gastric medium were significantly lower than in the intestine medium. The results of this study showed that the use of berberine-citric acid or berberine-gelucire complex could be considered a promising technique to increase the saturation solubility and improve the release characteristics of berberine from the pellet formulation.


Asunto(s)
Berberina , Química Farmacéutica , Composición de Medicamentos , Liberación de Fármacos , Excipientes , Tamaño de la Partícula , Solubilidad , Berberina/química , Berberina/administración & dosificación , Berberina/farmacocinética , Excipientes/química , Composición de Medicamentos/métodos , Química Farmacéutica/métodos , Disponibilidad Biológica , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Polvos/química , Difracción de Rayos X/métodos , Rastreo Diferencial de Calorimetría/métodos
13.
J Pharm Biomed Anal ; 247: 116256, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38850847

RESUMEN

A long-term stability study using high performance liquid chromatography (HPLC) revealed an unidentified impurity in the bromhexine hydrochloride injection, which was employed as a mucolytic agent. Investigations into stress degradation and elemental impurities revealed one of the elemental impurities Fe3+ in this injection as the primary generator of these impurities. This impurity, named N-carboxymethyl bromhexine, was a product formed during drug-excipient interaction between bromhexine and tartaric acid with Fe3+. The structure of the impurity was identified through ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD), liquid chromatograph mass spectrometer (LC-MS). Further, the formation mechanism of the impurity was discussed. Overall, this study elucidates the cause, origin, and mechanism of an unknown impurity in bromhexine hydrochloride injection, providing a basis for quality control for bromhexine hydrochloride injections and drug products containing both amine and tartaric acid.


Asunto(s)
Bromhexina , Contaminación de Medicamentos , Excipientes , Bromhexina/química , Bromhexina/análisis , Cromatografía Líquida de Alta Presión/métodos , Excipientes/química , Excipientes/análisis , Tartratos/química , Tartratos/análisis , Espectrometría de Masas/métodos , Estabilidad de Medicamentos , Control de Calidad
14.
J Biomed Mater Res A ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856491

RESUMEN

Protein biotherapeutics typically require expensive cold-chain storage to maintain their fold and function. Packaging proteins in the dry state via lyophilization can reduce these cold-chain requirements. However, formulating proteins for lyophilization often requires extensive optimization of excipients that both maintain the protein folded state during freezing and drying (i.e., "cryoprotection" and "lyoprotection"), and form a cake to carry the dehydrated protein. Here we show that sweet corn phytoglycogens, which are glucose dendrimers, can act as both a protein lyoprotectant and a cake-forming agent. Phytoglycogen (PG) dendrimers from 16 different maize sources (PG1-16) were extracted via ethanol precipitation. PG size was generally consistent at ~70-100 nm for all variants, whereas the colloidal stability in water, protein contaminant level, and maximum density of cytocompatibility varied for PG1-16. 10 mg/mL PG1, 2, 9, 13, 15, and 16 maintained the activity of various proteins, including green fluorescent protein, lysozyme, ß-galactosidase, and horseradish peroxidase, over a broad range of concentrations, through multiple rounds of lyophilization. PG13 was identified as the lead excipient candidate as it demonstrated narrow dispersity, colloidal stability in phosphate-buffered saline, low protein contaminants, and cytocompatibility up to 10 mg/mL in NIH3T3 cell cultures. All dry protein-PG13 mixtures had a cake-like appearance and all frozen protein-PG13 mixtures had a Tg' of ~ -26°C. The lyoprotection and cake-forming properties of PG13 were density-dependent, requiring a minimum density of 5 mg/mL for maximum activity. Collectively these data establish PG dendrimers as a new class of excipient to formulate proteins in the dry state.

15.
J Pharm Health Care Sci ; 10(1): 31, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907305

RESUMEN

BACKGROUND: The improvement in flowability and adhesion of starch powder (SP) is essential for using starch as an excipient for lactose intolerant patients. In this study, we attempted to evaluate the usefulness of hydroxypropylcellulose with molecular weight 80,000 (HPC-80) in the preparation of the starch granules (SG) as a substitute for excipient lactose. METHODS: Hydroxypropylcellulose with molecular weight 30,000 (HPC-30) and HPC-80 were used as binders to prepare the SG, and defined as HPC-30-SG and HPC-80-SG, respectively. Mean particle size (D50) was measured according to the Method, Optical Microscopy of Particle Size Determination in Japanese Pharmacopoeia, Eighteenth Edition, and storage stability were evaluated by measuring of the physical properties after vortexing the granules for 180 s (physical impact). The product loss rate was calculated from the weight change of the various excipients before and after the one dose packaging (ODP). RESULTS: The D50 of SP (30 µm) was smaller than that of the lactose powder (115 µm). The granulation with 0.75-3% HPC-30 and HPC-80 increased the particle size of SP, and the D50 in 1.5% HPC-30-SG (255 µm) and HPC-80-SG (220 µm) were higher than that of lactose. The excipient was removed from the heat seal of the ODP, and upon visual inspection, a large amount of starchy material was observed to be adhering to the paper in the SP. On the other hand, the low recovery rate in SP was attenuated by the granulation with HPC-30 and HPC-80. In the both HPC-30 and HPC-80, the improvement in recovery rate reached a plateau at 1.5%, and the levels of recovery rate was similar to that of lactose. The recovery rate in the 0.75-3% HPC-30-SG and 0.75% HPC-80-SG were decreased by the physical impact, however, the recovery rate and amount of 1.5% and 3% HPC-80-SG were not affected by the physical impact, and these levels were similar to that of lactose. CONCLUSIONS: The use of HPC-80 as a binder of SG was found to produce a higher quality granule product than conventional HPC-based SG. This finding is useful in streamlining the preparation of starch-based powdered medicine in clinical applications.

17.
Int J Pharm X ; 7: 100251, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38799178

RESUMEN

The contributions of fine excipient materials to drug dispersibility from carrier-based dry powder inhalation (DPI) formulations are well recognized, although they are not completely understood. To improve the understanding of these contributions, we investigated the influences of the particle size of the fine excipient materials on characteristics of carrier-based DPI formulations. We studied two particle size grades of silica microspheres, with volume median diameters of 3.31 µm and 8.14 µm, as fine excipient materials. Inhalation formulations, each composed of a lactose carrier material, one of the fine excipient materials (2.5% or 15.0% w/w), and a drug (fluticasone propionate) material (1.5% w/w) were prepared. The physical microstructure, the rheological properties, the aerosolization pattern, and the aerodynamic performance of the formulations were studied. At low concentration, the large silica microspheres had a more beneficial influence on the drug dispersibility than the small silica microspheres. At high concentration, only the small silica microspheres had a beneficial influence on the drug dispersibility. The results reveal influences of fine excipient materials on mixing mechanics. At low concentration, the fine particles improved deaggregation and distribution of the drug particles over the surfaces of the carrier particles. The large silica microspheres were associated with a greater mixing energy and a greater improvement in the drug dispersibility than the small silica microspheres. At high concentration, the large silica microspheres kneaded the drug particles onto the surfaces of the carrier particles and thus impaired the drug dispersibility. As a critical attribute of fine excipient materials in carrier-based dry powder inhalation formulations, the particle size demands robust specification setting.

18.
Drug Discov Today ; 29(6): 104012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705512

RESUMEN

Scientists around the globe have done cutting-edge research to facilitate the delivery of poorly absorbed drugs via various routes of administration and different delivery systems. The vaginal route of administration has emerged as a promising mode of drug delivery, attributed to its anatomy and physiology. Novel drug delivery systems overcome the demerits of conventional systems via nanobiotechnology. This review will focus on the disorders associated with women that are currently targeted by vaginal drug delivery systems. In addition, it will provide insights into innovations in drug formulations for the general benefit of women.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Administración Intravaginal , Sistemas de Liberación de Medicamentos/métodos , Femenino , Animales , Vagina , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química
19.
J Pharm Sci ; 113(8): 2454-2463, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38701896

RESUMEN

Amphotericin B (AmB) is the gold standard for antifungal therapy; however, its poor solubility limits its administration via intravenous infusion. A promising formulation strategy to achieve an oral formulation is the development of amorphous solid dispersions (ASDs) via spray-drying. Inclusion of surfactants into ASDs is a newer concept, yet it offers increased dissolution opportunities when combined with a polymer (HPMCAS 912). We developed both binary ASDs (AmB:HPMCAS 912 or AmB:surfactant) and ternary ASDs (AmB:HPMCAS 912:surfactant) using a variety of surfactants to determine the optimal surfactant carbon chain length and functional group for achieving maximal AmB concentration during in vitro dissolution. The ternary ASDs containing surfactants with a carbon chain length of 14 ± 2 carbons and a sulfate functional group increased the dissolution of AmB by 90-fold compared to crystalline AmB. These same surfactants, when added to a binary ASD, however, were only able to achieve up to a 40-fold increase, alluding to a potential interaction occurring between excipients or excipient and drug. This potential interaction was supported by dynamic light scattering data, in which the ternary formulation produced a single peak at 895.2 dnm. The absence of more than one peak insinuates that all three components are interacting in some way to form a single structure, which may be preventing AmB self-aggregation, thus improving the dissolution concentration of AmB.


Asunto(s)
Anfotericina B , Antifúngicos , Tensoactivos , Anfotericina B/química , Anfotericina B/administración & dosificación , Antifúngicos/química , Antifúngicos/administración & dosificación , Química Farmacéutica/métodos , Cristalización , Composición de Medicamentos/métodos , Liberación de Fármacos , Excipientes/química , Polímeros/química , Solubilidad , Tensoactivos/química
20.
Mol Pharm ; 21(7): 3634-3642, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805365

RESUMEN

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.


Asunto(s)
Adenilato Quinasa , Escherichia coli , Liofilización , Trehalosa , Liofilización/métodos , Adenilato Quinasa/metabolismo , Trehalosa/química , Albúmina Sérica Bovina/química , Excipientes/química , Rastreo Diferencial de Calorimetría , Maltosa/química , Histidina/química , Arginina/química , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA