Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.125
Filtrar
1.
Adv Exp Med Biol ; 1460: 431-462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287861

RESUMEN

The adiponectin (APN) levels in obesity are negatively correlated with chronic subclinical inflammation markers. The hypertrophic adipocytes cause obesity-linked insulin resistance and metabolic syndrome. Furthermore, macrophage polarization is a key determinant regulating adiponectin receptor (AdipoR1/R2) expression and differential adiponectin-mediated macrophage inflammatory responses in obese individuals. In addition to decrease in adiponectin concentrations, the decline in AdipoR1/R2 messenger ribonucleic acid (mRNA) expression leads to a decrement in adiponectin binding to cell membrane, and this turns into attenuation in the adiponectin effects. This is defined as APN resistance, and it is linked with insulin resistance in high-fat diet-fed subjects. The insulin-resistant group has a significantly higher leptin-to-APN ratio. The leptin-to-APN ratio is more than twofold higher in obese individuals. An increase in expression of AdipoRs restores insulin sensitivity and ß-oxidation of fatty acids via triggering intracellular signal cascades. The ratio of high molecular weight to total APN is defined as the APN sensitivity index (ASI). This index is correlated to insulin sensitivity. Homeostasis model of assessment (HOMA)-APN and HOMA-estimated insulin resistance (HOMA-IR) are the most suitable methods to estimate the metabolic risk in metabolic syndrome. While morbidly obese patients display a significantly higher plasma leptin and soluble (s)E-selectin concentrations, leptin-to-APN ratio, there is a significant negative correlation between leptin-to-APN ratio and sP-selectin in obese patients. When comparing the metabolic dysregulated obese group with the metabolically healthy obese group, postprandial triglyceride clearance, insulin resistance, and leptin resistance are significantly delayed following the oral fat tolerance test in the first group. A neuropeptide, Spexin (SPX), is positively correlated with the quantitative insulin sensitivity check index (QUICKI) and APN. APN resistance together with insulin resistance forms a vicious cycle. Despite normal or high APN levels, an impaired post-receptor signaling due to adaptor protein-containing pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1)/APPL2 may alter APN efficiency and activity. However, APPL2 blocks adiponectin signaling through AdipoR1 and AdipoR2 because of the competitive inhibition of APPL1. APPL1, the intracellular binding partner of AdipoRs, is also an important mediator of adiponectin-dependent insulin sensitization. The elevated adiponectin levels with adiponectin resistance are compensatory responses in the condition of an unusual discordance between insulin resistance and APN unresponsiveness. Hypothalamic recombinant adeno-associated virus (rAAV)-leptin (Lep) gene therapy reduces serum APN levels, and it is a more efficient strategy for long-term weight maintenance.


Asunto(s)
Adiponectina , Resistencia a la Insulina , Insulina , Leptina , Obesidad , Humanos , Leptina/metabolismo , Leptina/sangre , Obesidad/metabolismo , Obesidad/sangre , Adiponectina/metabolismo , Adiponectina/sangre , Insulina/metabolismo , Insulina/sangre , Animales , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Transducción de Señal , Síndrome Metabólico/metabolismo , Síndrome Metabólico/sangre
2.
Adv Exp Med Biol ; 1460: 697-726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287870

RESUMEN

Obesity is a constantly growing health problem which reduces quality of life and life expectancy. Bariatric surgery (BS) for obesity is considered when all other conservative treatment modalities have failed. Comparison of the multidisciplinary programs with BS regarding to the weight loss showed that substantial and durable weight reduction have been achieved only with bariatric surgical treatments. Although laparoscopic sleeve gastrectomy is the most popular BS, it has high long-term failure rates, and it is claimed that one of every three patients will undergo another bariatric procedure within a 10-year period. Although BS provides weight loss and improvement of metabolic comorbidities, in long-term follow-up, weight gain is observed in half of the patients, while decrease in bone mass and nutritional deficiencies occur in up to 90%. Moreover, despite significant weight loss, several psychological aspects of patients are worsened in comparison to preoperative levels. Nearly one-fifth of postoperative patients with "Loss-of-eating control" meet food addiction criteria. Therefore, the benefits of weight loss following bariatric procedures alone are still debated in terms of the proinflammatory and metabolic profile of obesity.


Asunto(s)
Cirugía Bariátrica , Obesidad , Pérdida de Peso , Humanos , Cirugía Bariátrica/métodos , Obesidad/cirugía , Obesidad/metabolismo , Obesidad/fisiopatología , Calidad de Vida , Resultado del Tratamiento , Gastrectomía/métodos , Laparoscopía/métodos
3.
Adv Exp Med Biol ; 1460: 489-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287863

RESUMEN

Parallel to the increasing prevalence of obesity in the world, the mortality from cardiovascular disease has also increased. Low-grade chronic inflammation in obesity disrupts vascular homeostasis, and the dysregulation of adipocyte-derived endocrine and paracrine effects contributes to endothelial dysfunction. Besides the adipose tissue inflammation, decreased nitric oxide (NO)-bioavailability, insulin resistance (IR), and oxidized low-density lipoproteins (oxLDLs) are the main factors contributing to endothelial dysfunction in obesity and the development of cardiorenal metabolic syndrome. While normal healthy perivascular adipose tissue (PVAT) ensures the dilation of blood vessels, obesity-associated PVAT leads to a change in the profile of the released adipo-cytokines, resulting in a decreased vasorelaxing effect. Higher stiffness parameter ß, increased oxidative stress, upregulation of pro-inflammatory cytokines, and nicotinamide adenine dinucleotide phosphate (NADP) oxidase in PVAT turn the macrophages into pro-atherogenic phenotypes by oxLDL-induced adipocyte-derived exosome-macrophage crosstalk and contribute to the endothelial dysfunction. In clinical practice, carotid ultrasound, higher leptin levels correlate with irisin over-secretion by human visceral and subcutaneous adipose tissues, and remnant cholesterol (RC) levels predict atherosclerotic disease in obesity. As a novel therapeutic strategy for cardiovascular protection, liraglutide improves vascular dysfunction by modulating a cyclic adenosine monophosphate (cAMP)-independent protein kinase A (PKA)-AMP-activated protein kinase (AMPK) pathway in PVAT in obese individuals. Because the renin-angiotensin-aldosterone system (RAAS) activity, hyperinsulinemia, and the resultant IR play key roles in the progression of cardiovascular disease in obesity, RAAS-targeted therapies contribute to improving endothelial dysfunction. By contrast, arginase reciprocally inhibits NO formation and promotes oxidative stress. Thus, targeting arginase activity as a key mediator in endothelial dysfunction has therapeutic potential in obesity-related vascular comorbidities. Obesity-related endothelial dysfunction plays a pivotal role in the progression of type 2 diabetes (T2D). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone (thiazolidinedione), is a popular drug for treating diabetes; however, it leads to increased cardiovascular risk. Selective sodium-glucose co-transporter-2 (SGLT-2) inhibitor empagliflozin (EMPA) significantly improves endothelial dysfunction and mortality occurring through redox-dependent mechanisms. Although endothelial dysfunction and oxidative stress are alleviated by either metformin or EMPA, currently used drugs to treat obesity-related diabetes neither possess the same anti-inflammatory potential nor simultaneously target endothelial cell dysfunction and obesity equally. While therapeutic interventions with glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide or bariatric surgery reverse regenerative cell exhaustion, support vascular repair mechanisms, and improve cardiometabolic risk in individuals with T2D and obesity, the GLP-1 analog exendin-4 attenuates endothelial endoplasmic reticulum stress.


Asunto(s)
Endotelio Vascular , Obesidad , Humanos , Obesidad/metabolismo , Obesidad/fisiopatología , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Tejido Adiposo/metabolismo , Tejido Adiposo/fisiopatología , Estrés Oxidativo
4.
Adv Exp Med Biol ; 1460: 629-655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287867

RESUMEN

Obesity activates both innate and adaptive immune responses in adipose tissue. Adipose tissue macrophages are functional antigen-presenting cells that promote the proliferation of interferon-gamma (IFN-γ)-producing cluster of differentiation (CD)4+ T cells in adipose tissue of obese subjects. The increased formation of neopterin and degradation of tryptophan may result in decreased T-cell responsiveness and lead to immunodeficiency. The activity of inducible indoleamine 2,3-dioxygenase-1 (IDO1) plays a major role in pro-inflammatory, IFN-γ-dominated settings. The expression of several kynurenine pathway enzyme genes is significantly increased in obesity. IDO1 in obesity shifts tryptophan metabolism from serotonin and melatonin synthesis to the formation of kynurenines and increases the ratio of kynurenine to tryptophan as well as with neopterin production. Reduction in serotonin (5-hydroxytryptamine; 5-HT) production provokes satiety dysregulation that leads to increased caloric uptake and obesity. According to the monoamine-deficiency hypothesis, a deficiency of cerebral serotonin is involved in neuropsychiatric symptomatology of depression, mania, and psychosis. Indeed, bipolar disorder (BD) and related cognitive deficits are accompanied by a higher prevalence of overweight and obesity. Furthermore, the accumulation of amyloid-ß in Alzheimer's disease brains has several toxic effects as well as IDO induction. Hence, abdominal obesity is associated with vascular endothelial dysfunction. kynurenines and their ratios are prognostic parameters in coronary artery disease. Increased kynurenine/tryptophan ratio correlates with increased intima-media thickness and represents advanced atherosclerosis. However, after bariatric surgery, weight reduction does not lead to the normalization of IDO1 activity and atherosclerosis. IDO1 is involved in the mechanisms of immune tolerance and in the concept of tumor immuno-editing process in cancer development. Serum IDO1 activity is still used as a parameter in cancer development and growth. IDO-producing tumors show a high total IDO immunostaining score, and thus, using IDO inhibitors, such as Epacadostat, Navoximod, and L isomer of 1-methyl-tryptophan, seems an important modality for cancer treatment. There is an inverse correlation between serum folate concentration and body mass index, thus folate deficiency leads to hyperhomocysteinemia-induced oxidative stress. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated protein-4 synergizes with imatinib, which is an inhibitor of mitochondrial folate-mediated one-carbon (1C) metabolism. Antitumor effects of imatinib are enhanced by increasing T-cell effector function in the presence of IDO inhibition. Combining IDO targeting with chemotherapy, radiotherapy and/or immunotherapy, may be an effective tool against a wide range of malignancies. However, there are some controversial results regarding the efficacy of IDO1 inhibitors in cancer treatment.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Obesidad , Triptófano , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Obesidad/metabolismo , Obesidad/enzimología , Triptófano/metabolismo , Animales , Serotonina/metabolismo , Tejido Adiposo/metabolismo , Quinurenina/metabolismo
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 829-834, 2024 Aug 15.
Artículo en Chino | MEDLINE | ID: mdl-39148387

RESUMEN

OBJECTIVES: To investigate the changes in the serum levels of oxidized phospholipids (OxPLs) and endothelial nitric oxide synthase (eNOS) and their association with coronary artery disease (CAL) in children in the acute stage of Kawasaki disease (KD), as well as the clinical significance of OxPLs and eNOS. METHODS: A prospective study was conducted on 95 children in the acute stage of KD (KD group). According to the presence of absence of CAL, the KD group was further divided into a CAL subgroup and a non-CAL (NCAL) subgroup. Thirty children with fever due to lower respiratory tract infection were enrolled as the fever group. Thirty healthy children who underwent physical examination were enrolled as the healthy control group. The above groups were compared in terms of general information and serum levels of OxPLs, eNOS and other laboratory indexes, and the correlation between OxPLs level and eNOS level was analyzed. RESULTS: The KD group had a significantly higher level of OxPLs and a significantly lower level of eNOS compared with the fever group and the healthy control group (P<0.05). After treatment, the children with KD had a significantly decreased OxPLs level and a significantly increased eNOS level (P<0.05). Compared with the NCAL subgroup, the CAL subgroup had a significantly higher level of OxPLs and a significantly lower level of eNOS (P<0.05). Among the children of KD, the level of OxPLs was negatively correlated with that of eNOS (rs=-0.353, P<0.05). CONCLUSIONS: Serum OxPLs and eNOS in the acute stage of KD may be involved in the development of CAL in children with KD, and therefore, they may be used as the biomarkers to predict CAL in these children.


Asunto(s)
Síndrome Mucocutáneo Linfonodular , Óxido Nítrico Sintasa de Tipo III , Fosfolípidos , Humanos , Síndrome Mucocutáneo Linfonodular/sangre , Masculino , Femenino , Óxido Nítrico Sintasa de Tipo III/sangre , Preescolar , Lactante , Estudios Prospectivos , Enfermedad Aguda , Fosfolípidos/sangre , Oxidación-Reducción , Niño , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/etiología
6.
Mater Today Bio ; 27: 101152, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104901

RESUMEN

Uniaxial cyclic stretching plays a pivotal role in the fields of tissue engineering and regenerative medicine, influencing cell behaviors and functionality based on physical properties, including matrix morphology and mechanical stimuli. This study delves into the response of endothelial cells to uniaxial cyclic strain within the geometric constraints of micro-nano fibers. Various structural scaffold forms of poly(l-lactide-co-caprolactone) (PLCL), such as flat membranes, randomly oriented fiber membranes, and aligned fiber membranes, were fabricated through solvent casting and electrospinning methods. Our investigation focuses on the morphological variation of endothelial cells under diverse geometric constraints and the mechanical-dependent release of nitric oxide (NO) on oriented fibrous membranes. Our results indicate that while uniaxial cyclic stretching promotes endothelial cell spreading, the anisotropy of the matrix morphology remains the primary driving factor for cell alignment. Additionally, uniaxial cyclic stretching significantly enhances NO release, with a notably stronger effect correlated to the increasing strain amplitude. Importantly, this study reveals that uniaxial cyclic stretching enhances the mRNA expression of key proteins, including talin, vinculin, rac, and nitric oxide synthase (eNOS).

7.
Food Sci Biotechnol ; 33(12): 2865-2875, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39184991

RESUMEN

A sustained formation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) is crucial to safeguard the vascular system against the development of cardiovascular diseases. This study investigated the prolonged phosphorylation and expression of eNOS induced by polyphenol-rich Aronia melanocarpa juice (AMJ), along with its underlying mechanisms. The findings revealed that AMJ triggered concentration- and time-dependent increases in eNOS phosphorylation and expression, leading to sustained NO production for 15 h. Investigations with various enzymes and inhibitors revealed that the effect of AMJ was associated with redox sensitivity, activating the PI3-kinase/Akt, JNK, and p38 MAPK pathways. These pathways led to the inactivation of transcription factors FoxO1 and FoxO3a through phosphorylation, relieving their repression on eNOS expression. Therefore, the capability of AMJ to consistently trigger prolonged eNOS phosphorylation and expression via complex redox-sensitive pathways highlights its potential for maintaining vascular health and preventing cardiovascular diseases.

8.
Exp Physiol ; 109(9): 1593-1603, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39092897

RESUMEN

The purpose of this study was to determine the effect of circulating microvesicles isolated from chronic electronic (e-)cigarette users on cultured human umbilical vein endothelial cell (HUVEC) expression of nuclear factor-κB (NF-κB), cellular cytokine release, phosphorylation of endothelial nitric oxide synthase (eNOS) and NO production. The HUVECs were treated with microvesicles isolated via flow cytometry from nine non-tobacco users (five male and four female; 22 ± 2 years of age) and 10 e-cigarette users (six male and four female; 22 ± 2 years of age). Microvesicles from e-cigarette users induced significantly greater release of interleukin-6 (183.4 ± 23.6 vs. 150.6 ± 15.4 pg/mL; P = 0.002) and interleukin-8 (160.0 ± 31.6 vs. 129.4 ± 11.2 pg/mL; P = 0.01), in addition to expression of p-NF-κB p65 (Ser536) (18.8 ± 3.4 vs. 15.6 ± 1.5 a.u.; P = 0.02) from HUVECs compared with microvesicles from non-tobacco users. Nuclear factor-κB p65 was not significantly different between microvesicles from the non-tobacco users and from the e-cigarette users (87.6 ± 8.7 vs. 90.4 ± 24.6 a.u.; P = 0.701). Neither total eNOS (71.4 ± 21.8 vs. 80.4 ± 24.5 a.u.; P = 0.413) nor p-eNOS (Thr495) (229.2 ± 26.5 vs. 222.1 ± 22.7 a.u.; P = 0.542) was significantly different between microvesicle-treated HUVECs from non-tobacco users and e-cigarette users. However, p-eNOS (Ser1177) (28.9 ± 6.2 vs. 45.8 ± 9.0 a.u.; P < 0.001) expression was significantly lower from e-cigarette users compared with non-tobacco users. Nitric oxide production was significantly lower (8.2 ± 0.6 vs. 9.7 ± 0.9 µmol/L; P = 0.001) in HUVECs treated with microvesicles from e-cigarette users compared with microvesicles from non-tobacco users. This study demonstrated increased NF-κB activation and inflammatory cytokine production, in addition to diminished eNOS activity and NO production resulting from e-cigarette use. HIGHLIGHTS: What is the central question of this study? Circulating microvesicles contribute to cardiovascular health and disease via their effects on the vascular endothelium. The impact of electronic (e-)cigarette use on circulating microvesicle phenotype is not well understood. What is the main finding and its importance? Circulating microvesicles from e-cigarette users increase endothelial cell inflammation and impair endothelial nitric oxide production. Endothelial inflammation and diminished nitric oxide bioavailability are central factors underlying endothelial dysfunction and, in turn, cardiovascular disease risk. Deleterious changes in the functional phenotype of circulating microvesicles might contribute to the reported adverse effects of e-cigarette use on cardiovascular health.


Asunto(s)
Micropartículas Derivadas de Células , Sistemas Electrónicos de Liberación de Nicotina , Células Endoteliales de la Vena Umbilical Humana , Inflamación , FN-kappa B , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Masculino , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Adulto Joven , Inflamación/metabolismo , FN-kappa B/metabolismo , Vapeo/efectos adversos , Vapeo/metabolismo , Adulto , Interleucina-6/metabolismo , Citocinas/metabolismo , Interleucina-8/metabolismo , Células Cultivadas , Fosforilación
9.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201757

RESUMEN

Nitric oxide (NO) is a highly versatile gasotransmitter that has first been shown to regulate cardiovascular function and then to exert tight control over a much broader range of processes, including neurotransmitter release, neuronal excitability, and synaptic plasticity. Endothelial NO synthase (eNOS) is usually far from the mind of synaptic neurophysiologists, who have focused most of their attention on neuronal NO synthase (nNOS) as the primary source of NO at the neurovascular unit (NVU). Nevertheless, the available evidence suggests that eNOS could also contribute to generating the burst of NO that, serving as volume intercellular messenger, is produced in response to neuronal activity in the brain parenchyma. Herein, we review the role of eNOS in both the regulation of cerebral blood flow and of synaptic plasticity and discuss the mechanisms by which cerebrovascular endothelial cells may transduce synaptic inputs into a NO signal. We further suggest that eNOS could play a critical role in vascular-to-neuronal communication by integrating signals converging onto cerebrovascular endothelial cells from both the streaming blood and active neurons.


Asunto(s)
Circulación Cerebrovascular , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Circulación Cerebrovascular/fisiología , Animales , Óxido Nítrico/metabolismo , Plasticidad Neuronal , Células Endoteliales/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Neuronas/metabolismo , Acoplamiento Neurovascular/fisiología
10.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1538029

RESUMEN

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Asunto(s)
Sesquiterpenos/administración & dosificación , Enfermedades Vasculares/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/lesiones , Supervivencia Celular , Lipopolisacáridos/toxicidad , Western Blotting , Óxido Nítrico Sintasa , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
J Vasc Res ; 61(4): 179-196, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952123

RESUMEN

INTRODUCTION: The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart. METHODS: All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated. RESULTS: Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size. CONCLUSIONS: The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.


Asunto(s)
Ciclosporina , Diabetes Mellitus Experimental , Daño por Reperfusión Miocárdica , Miocardio , Donantes de Óxido Nítrico , Óxido Nítrico , Transducción de Señal , Animales , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Óxido Nítrico/metabolismo , Diabetes Mellitus Experimental/complicaciones , Masculino , Ciclosporina/farmacología , Donantes de Óxido Nítrico/farmacología , Miocardio/metabolismo , Miocardio/patología , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Factores de Tiempo , Ratas Sprague-Dawley , Troponina T/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/complicaciones , Transportador de Glucosa de Tipo 4
12.
Biomed Pharmacother ; 178: 117143, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39024838

RESUMEN

Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Células Endoteliales , Humanos , Calcinosis/patología , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Células Endoteliales/patología , Células Endoteliales/metabolismo , Animales , Estenosis de la Válvula Aórtica/patología , Óxido Nítrico/metabolismo , Mecanotransducción Celular , Enfermedad de la Válvula Aórtica/metabolismo , Enfermedad de la Válvula Aórtica/patología , Transición Epitelial-Mesenquimal
13.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000349

RESUMEN

Lipid emulsions are used as adjuvant drugs to alleviate intractable cardiovascular collapse induced by drug toxicity. We aimed to examine the effect of lipid emulsions on labetalol-induced vasodilation and the underlying mechanism in the isolated rat aorta. We studied the effects of endothelial denudation, NW-nitro-l-arginine methyl ester (l-NAME), calmidazolium, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (ODQ), and lipid emulsions on labetalol-induced vasodilation. We also evaluated the effects of lipid emulsions on cyclic guanosine monophosphate (cGMP) formation, endothelial nitric oxide synthase (eNOS) phosphorylation, and endothelial calcium levels induced by labetalol. Labetalol-induced vasodilation was higher in endothelium-intact aortas than that in endothelium-denuded aortas. l-NAME, calmidazolium, methylene blue, and ODQ inhibited labetalol-induced vasodilation in endothelium-intact aortas. Lipid emulsions inhibited labetalol-induced vasodilation in endothelium-intact and endothelium-denuded aortas. l-NAME, ODQ, and lipid emulsions inhibited labetalol-induced cGMP formation in endothelium-intact aortas. Lipid emulsions reversed the stimulatory and inhibitory eNOS (Ser1177 and Thr495) phosphorylation induced by labetalol in human umbilical vein endothelial cells and inhibited the labetalol-induced endothelial calcium increase. Moreover, it decreased labetalol concentration. These results suggest that lipid emulsions inhibit vasodilation induced by toxic doses of labetalol, which is mediated by the inhibition of endothelial nitric oxide release and reduction of labetalol concentration.


Asunto(s)
Aorta , GMP Cíclico , Emulsiones , Labetalol , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Vasodilatación/efectos de los fármacos , Ratas , Aorta/efectos de los fármacos , Aorta/metabolismo , Labetalol/farmacología , Masculino , Óxido Nítrico Sintasa de Tipo III/metabolismo , GMP Cíclico/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Ratas Sprague-Dawley , Humanos , Lípidos , Fosforilación/efectos de los fármacos , Calcio/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo
14.
Antioxidants (Basel) ; 13(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38929072

RESUMEN

Recent research suggests that photobiomodulation therapy (PBMT) positively impacts the vascular function associated with various cerebrovascular diseases. Nevertheless, the specific mechanisms by which PBMT improves vascular function remain ambiguous. Since endothelial nitric oxide synthase (eNOS) is crucial in regulating vascular function following cerebral ischemia, we investigated whether eNOS is a key element controlling cerebrovascular function and the senescence of vascular endothelial cells following PBMT treatment. Both rat photothrombotic (PT) stroke and in vitro oxygen-glucose deprivation (OGD)-induced vascular endothelial injury models were utilized. We demonstrated that treatment with PBMT (808 nm, 350 mW/cm2, 2 min/day) for 7 days significantly reduced PT-stroke-induced vascular permeability. Additionally, PBMT inhibited the levels of endothelial senescence markers (senescence green and p21) and antiangiogenic factor (endostatin), while increasing the phospho-eNOS (Ser1177) in the peri-infarct region following PT stroke. In vitro study further indicated that OGD increased p21, endostatin, and DNA damage (γH2AX) levels in the brain endothelial cell line, but they were reversed by PBMT. Intriguingly, the beneficial effects of PBMT were attenuated by a NOS inhibitor. In summary, these findings provide novel insights into the role of eNOS in PBMT-mediated protection against cerebrovascular senescence and endothelial dysfunction following ischemia. The use of PBMT as a therapeutic is a promising strategy to improve endothelial function in cerebrovascular disease.

15.
Endocr Regul ; 58(1): 138-143, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861536

RESUMEN

Objective. Polymorphism investigation of T786C gene promoter of endothelial nitric oxide synthase (eNOS/NOS3) in the arterial hypertension is a promising field for determining the relationship between heredity, hypertension, and dyslipidemia, which still remains controversial. The purpose of the study was to investigate the lipid profile, which depends on the NOS3 T786C gene promotor region polymorphism in patients with arterial hypertension. Methods. The study involved 86 patients with arterial hypertension. The control group consisted of 30 basically healthy individuals. The lipid profile in the blood serum of the studied patients was measured by commercially available kits using Biochem FC-200 analyzer (HTI, USA). The allelic polymorphism of NOS3 T786C gene promoter was studied using a polymerase chain reaction technique with electrophoretic detection of the results. Results. An increase at the level of all atherogenic fractions in the blood was found in the group of patients carrying the CC genotype compared with carriers of the TT genotype of the NOS3 gene. The total cholesterol serum level in the group of carriers of the CC genotype of NOS3 T786C gene promoter increased by 33.3% compared with carriers of the TT genotype and it was almost twice as high as the control values. In the group of carriers in the CC genotype of the NOS3 gene, the serum level of triglycerides was statistically significantly higher (2.9 times) than in the group of carriers of the TT genotype. The low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL) serum levels significantly increased in patients with arterial hypertension with the CC genotype by 1.6 and 4.6 times, respectively, compared with the TT genotype carriers. The high-density lipoprotein (HDL) serum level, as an antiatherogenic factor, was statistically significantly lower (by 45.8%) in the group of the CC genotype carriers of the NOS3 gene than in the group with carriers of the TT genotype (0.58±0.06 vs. 1.07±0.03 mmol/l.) Conclusions. The increase in all atherogenic and decrease in antiatherogenic lipid parameters of the lipidogram of patients with arterial hypertension and the deepening of dyslipidemia in carriers of the CC genotype compared with carriers of the TT genotype of the NOS3 T786C gene promoter is crucial in the development of dyslipidemia.


Asunto(s)
Hipertensión , Lípidos , Óxido Nítrico Sintasa de Tipo III , Regiones Promotoras Genéticas , Humanos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/sangre , Hipertensión/genética , Hipertensión/sangre , Regiones Promotoras Genéticas/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Lípidos/sangre , Polimorfismo Genético , Estudios de Casos y Controles , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Dislipidemias/genética , Dislipidemias/sangre
16.
Biomolecules ; 14(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927094

RESUMEN

Preeclampsia, a hypertensive disease of pregnancy of unknown etiology, is intensely studied as a model of cardiovascular disease (CVD) not only due to multiple shared pathologic elements but also because changes that develop over decades in CVD appear and resolve within days in preeclampsia. Those affected by preeclampsia and their offspring experience increased lifetime risks of CVD. At the systemic level, preeclampsia is characterized by increased cellular, membrane, and blood levels of cholesterol; however, cholesterol-dependent signaling, such as canonical Wnt/ßcatenin, Hedgehog, and endothelial nitric oxide synthase, is downregulated indicating a cholesterol deficit with the upregulation of cholesterol synthesis and efflux. Hypoxia-related signaling in preeclampsia also appears to be paradoxical with increased Hypoxia-Inducible Factors in the placenta but measurably increased oxygen in maternal blood in placental villous spaces. This review addresses the molecular mechanisms by which excessive systemic cholesterol and deficient cholesterol-dependent signaling may arise from the effects of dietary lipid variance and environmental membrane modifiers causing the cellular hypoxia that characterizes preeclampsia.


Asunto(s)
Colesterol , Hipoxia , Preeclampsia , Humanos , Preeclampsia/metabolismo , Embarazo , Femenino , Colesterol/metabolismo , Hipoxia/metabolismo , Placenta/metabolismo , Transducción de Señal , Animales
17.
Cureus ; 16(5): e61245, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38939274

RESUMEN

INTRODUCTION: Hypertension (HTN), a leading risk factor for cardiovascular diseases, is intricately linked with endothelial dysfunction, a hallmark of vascular pathology. The effect of oxidative stress in maintaining the optimum endothelial function in the regulation of blood pressure is yet to be explored. While numerous factors contribute to the pathogenesis of HTN, emerging evidence highlights the pivotal role of oxidative stress in endothelial dysfunction, offering novel insights into the underlying mechanisms. AIM: Our study delves into the multifaceted relationship between oxidative stress and endothelial dysfunction in HTN, elucidating key molecular pathways and potential therapeutic avenues. Our study aims to find out the association between oxidative stress and endothelial function in the regulation of blood pressure. METHODS: A total of 108 age-matched participants of both genders were divided into three groups by following the guidelines of the American Heart Association (AHA) classification for HTN. Blood pressure was recorded manually in resting posture three times at an interval of 10 minutes using a sphygmomanometer after providing 10 minutes of rest before the first reading. Parameters of oxidative stress and endothelial function were measured by using a UV spectrophotometer. Our study results were depicted as mean ± SD. RESULTS: The correlation between our variables was performed using Spearman's correlation considering the value of p<0.05 as statistically significant. Serum malondialdehyde (MDA), a parameter of oxidative stress, was found to be increasing and serum nitric oxide (NO), a parameter to assess endothelial function, was found to be decreasing as the blood pressure increased. These observations are indicative that optimal oxidative stress and optimal endothelial function are required to maintain normal blood pressure regardless of gender. CONCLUSIONS: All persons who are suspected of future cardiovascular risks should be regularly checked for these parameters to avoid cardiovascular morbidity such as HTN.

18.
Antioxidants (Basel) ; 13(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790609

RESUMEN

Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.

19.
Food Chem Toxicol ; 189: 114763, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797315

RESUMEN

Monosodium glutamate (MSG) administration has been shown to pronounce hypertension and oxidative status with increased renal blood flow (RBF), however, the precise mechanisms of action have never been demonstrated. This study aimed to investigate the MSG action by studying the alteration in renal architecture and specific protein expression in 2-kidney-1-clip hypertensive comparing to sham operative normotensive rats. The administered doses of MSG were 80, 160, or 320 mg/kg BW daily for 8 weeks. Using routine chemical staining, the congestion of glomerular capillaries, a lesser renal corpuscles and glomeruli size, a widen Bowman capsule's space, an increase in mesangial cell proliferation and mesangial matrix, renal interstitial fibrosis, focal cloudy swelling of renal tubular epithelial cells were observed. Immunological study revealed an increase in the expression of N-methyl-D-aspartate receptor (NMDA-R) and endothelial nitric oxide synthase (eNOS) but a decrease in neuronal NOS (nNOS). It is suggested that MSG may upregulate the NMDA-R levels which responsible for the oxidative stress, glomerular injury, and renal interstitial fibrosis. The NMDA-R may also stimulate eNOS overexpression which resulted in renal microvascular dilatation, a raise in RBF and GFR, and natriuresis and diuresis promotion. Long-term exposure of MSG may trigger adaptation of tubuloglomerular feedback through nNOS downregulation.


Asunto(s)
Hipertensión , Riñón , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico Sintasa de Tipo I , Receptores de N-Metil-D-Aspartato , Glutamato de Sodio , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Glutamato de Sodio/toxicidad , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Masculino , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/metabolismo , Ratas Wistar
20.
Artículo en Inglés | MEDLINE | ID: mdl-38775643

RESUMEN

Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) inhibits platelet and leukocyte adhesion while promoting vasorelaxation in smooth muscle cells. Dysfunctional regulation of eNOS is a hallmark of various vascular pathologies, notably atherosclerosis, often associated with areas of low shear stress on endothelial cells (ECs). While the link between EC morphology and local hemodynamics is acknowledged, the specific impact of EC morphology on eNOS regulation remains unclear. Morphological differences between elongated, aligned ECs and polygonal, randomly oriented ECs correspond to variations in focal adhesion and cytoskeletal organization, suggesting differing levels of cytoskeletal prestress. However, the functional outcomes of cytoskeletal prestress, particularly in the absence of shear stress, are not extensively studied in ECs. Some evidence suggests that elongated ECs exhibit decreased immunogenicity and enhanced NO production. This study aims to elucidate the signaling pathways governing VEGF-stimulated eNOS regulation in the aligned EC phenotype characterized by elongated and aligned cells within a monolayer. Using anisotropic topographic cues, bovine aortic endothelial cells (BAECs) were elongated and aligned, followed by VEGF treatment in the presence or absence of cytoskeletal tension inhibitors. Phosphorylation of eNOS ser1179, AKT ser437 and FAK Tyr397 in response to VEGF challenge were significantly heightened in aligned ECs compared to unaligned ECs. Moreover this response proved to be robustly tied to cytoskeletal tension as evinced by the abrogation of responses in the presence of the myosin II ATPase inhibitor, blebbistatin. Notably, this work demonstrates for the first time the reliance on FAK phosphorylation in VEGF-mediated eNOS activation and the comparatively greater contribution of the cytoskeletal machinery in propagating VEGF-eNOS signaling in aligned and elongated ECs. This research underscores the importance of utilizing appropriate vascular models in drug development and sheds light on potential mechanisms underlying vascular function and pathology that can help inform vascular graft design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA