Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 33: 177-185, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944411

RESUMEN

OBJECTIVES: Edwardsiella ictaluri is an important pathogen in farmed raised catfish. Recently, we showed that resistance to tetracycline and florfenicol in the E. ictaluri MS-17-156 strain isolated from channel catfish was facilitated by acquisition of a 135 kb plasmid (named pEIMS-171561). METHODS: We described the genetic structure of pEIMS-171561. Plasmid copy number and stability within E. ictaluri strain MS-17-156 was determined. We also investigated the in vitro and in vivo transferability of pEIMS-171561 using catfish as a model for in vivo transfer. RESULTS: pEIMS-171561 belonged to the IncA/C group and contained florfenicol efflux major facilitator superfamily (MFS) (floR), sulfonamides (sul2), and tetracycline efflux MFS (tetD) genes. The plasmid contained two conjugative transfer-associated regions and encoded six transposases and insertion sequences. In vitro conjugation experiments demonstrated that the IncA/C plasmid can transfer from E. ictaluri to Escherichia coli. The plasmid was stable in E. ictaluri without selection pressure for 33 days. We showed that pEIMS-171561 did not transfer from E. ictaluri MS-17-156 to endogenous microbiota in catfish. Moreover, we could not detect in vivo conjugal transfer of pEIMS-171561 from E. ictaluri to E. coli. Results from real-time PCR revealed upregulation of the floR gene in the intestines of catfish receiving florfenicol-medicated feed, compared with that in catfish receiving unmedicated feed. CONCLUSION: This study demonstrated that pEIMS-171561 did not disseminate from E. ictaluri to gut microbiota under selective pressure. This result suggests a limited role of the fish microbiota as a reservoir for this plasmid and for the spread of resistance.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Animales , Edwardsiella ictaluri/genética , Escherichia coli/genética , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Plásmidos/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Tetraciclina/uso terapéutico , Bagres/genética , Farmacorresistencia Microbiana
2.
J Food Sci ; 88(1): 391-402, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36463414

RESUMEN

The changes in microbiological, physiochemical, and textural properties in fresh cheeses made from either cow or goat milk were observed under hyperbaric storage (HS, 50-100 MPa) at room temperature (RT) and compared with refrigerated storage under normal atmospheric pressure for 60 days. An initial microbial growth inhibition was observed for both cheese types, as well as a considerable inactivation of all endogenous microbiota under HS/RT (75-100 MPa/RT). This contributed to a higher stability of pH and color values, especially at the higher pressure at room temperature (100 MPa/RT) throughout 60 days storage. A compression effect occurred during HS/RT, resulting in higher whey loss, reduction in moisture content, and textural changes. Such changes tended to decrease over time, to values closer to the initial ones, with hardness values at the 60th day of storage at 75/RT similar to those observed for refrigeration on the 7th day and 1.4-fold higher than those observed at 100/RT. Overall, HS/RT reduced the microbial populations load during storage (≥5 log units in some cases), with minimal effects on most of the evaluated quality parameters. These results point to a considerable shelf-life extension of HS fresh cheeses, without temperature control, pinpointing HS as a more sustainable preservation strategy than refrigeration, with great potential for industrial application. PRACTICAL APPLICATION: The results presented in this study point to increased microbial stability of fresh cheeses when stored under hyperbaric storage without temperature control, leading possibly to an increased shelf-life, of up to 60 days. This kind of new food preservation strategy may be suitable for longer transportation of foods, where energy may not be handily and widely available, while additionally contributing to increased shelf-life and safety. Also, hyperbaric storage could be applied throughout the food storage, improving shelf-life with a lower carbon footprint than refrigeration.


Asunto(s)
Queso , Temperatura , Almacenamiento de Alimentos/métodos , Conservación de Alimentos/métodos , Refrigeración/métodos
3.
World J Microbiol Biotechnol ; 37(3): 51, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594606

RESUMEN

This study aimed to assess the microbial diversity in Coffea canephora grown in four different environments of Espirito Santo state, Brazil. Coffee cherries of two different altitudes (300 and 600 m) and two terrain aspects (Southeast-facing and Northwest-facing slopes) were processed by the dry method. Samples were collected during the drying/fermentation process. Microorganisms were counted, isolated, and identified by MALDI-TOF, followed by sequencing of the ribosomal region. Sugars and organic acids were quantified by HPLC and volatile compounds of the roasted coffees were evaluated by GC-MS. Bacteria population presented a significant number of isolates as well as higher counts during the drying/fermentation process with respect to the population of yeasts. The principal genera of microorganisms found were Bacillus, Pichia, Candida, and Meyerozyma. Meyerozyma guilliermondii was the most frequent yeast in all environments. On the other hand, Pichia kluyveri was found only in coffee cherries from the 600 m altitude. The highest concentration of acetic and succinic acids observed was 6.06 mg/g and 0.84 mg/g, respectively. Sucrose concentrations ranged from 0.68 to 5.30 mg/g, fructose from 1.30 to 4.60 mg/g, and glucose from 0.24 to 1.25 mg/g. Thirty-six volatile compounds, belonging to the groups of pyrazines, alcohols, aldehydes, ketones, and furans were identified in roasted coffee, with differences between altitude and terrain aspects. Information about microbial diversity is crucial to better understand the coffee quality and distinct characteristics of coffee produced in different environments.


Asunto(s)
Coffea/química , Coffea/microbiología , Desecación/métodos , Manipulación de Alimentos/métodos , Alcoholes , Bacterias/clasificación , Brasil , Café/química , Café/microbiología , Fermentación , Hongos/clasificación , Cromatografía de Gases y Espectrometría de Masas
4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-780662

RESUMEN

Aims@#Microbiota endogenous to oleaginous plants have attracted special attention in recent years for their biotechnological potentials and applications including the production of biodegradable biopolyester poly(3- hydroxybutyrate) [P(3HB)] as an alternative to thermoplastics. The present study is aimed to screen the endophytic bacteria of selected oleaginous plants such as Arachis hypogaea L., Brassica napus L., Brassica nigra L., Helianthus annuus L., Ricinus communis L. and Sesamum indicum L. for the production of P(3HB). @*Methodology and results@#Bacteria endogenous to the oleaginous plants were isolated from surface sterilized healthy tissues following sterilization with 70% ethanol and 0.5% sodium hypochlorite and screened for P(3HB) production in mineral salts medium. Nile blue A staining method was used for detection of intracellular P(3HB), while the accumulated biopolyester was quantified spectrophotometrically following chemical conversion to chrotonic acid by treating with sulfuric acid. Five potent P(3HB) accumulating isolates have been selected and identified as Cellulosimicrobium cellulans AHS 01 (KX458038), Beijerinckia fluminensis AHR 02 (KX458039), Exiguobacterium acetylicum BNL 103 (KX458037), Bacillus toyonensis BNS 102 (KX458036) and Bacillus cereus RCL 02 (KX458035) based on morphological, physio-biochemical and 16S rDNA sequence analysis. These endogenously growing bacterial isolates accumulated intracellular biopolyester accounting 43-62% of their cell dry weight (CDW) when grown in mineral salts medium supplemented with yeast extract. Intracellular accumulation of P(3HB) by these isolates have also been confirmed by FTIR spectral analysis of lyophilized cell mass and 1HNMR spectra of the extracted polymer. @*Conclusion, significance and impact of study@#These findings, first of its kind point to exploration of endogenous bacterial communities of oil-producing plants as a potential bioresource for production of P(3HB) bioplastics in a sustainable manner.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA