Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(34): 44767-44779, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39143897

RESUMEN

Solid-state lithium-sulfur batteries (SSLSBs) have attracted a great deal of attention because of their high theoretical energy density and intrinsic safety. However, their practical applications are severely impeded by slow redox kinetics and poor cycling stability. Herein, we revealed the detrimental effect of aggregation of lithium polysulfides (LiPSs) on the redox kinetics and reversibility of SSLSBs. As a paradigm, we introduced a multifunctional hyperbranched ionic conducting (HIC) polymer serving as a solid polymer electrolyte (SPE) and cathode binder for constructing SSLSBs featuring high electrochemical activity and high cycling stability. It is demonstrated that the unique structure of the HIC polymer with numerous flexible ether oxygen dangling chains and fast segmental relaxation enables the dissociation of LiPS clusters, facilitates the conversion kinetics of LiPSs, and improves the battery's performance. A Li|HIC SPE|HIC-S battery, in which the HIC polymer acts as an SPE and cathode binder, exhibits an initial capacity of 910.1 mA h gS-1 at 0.1C and 40 °C, a capacity retention of 73.7% at the end of 200 cycles, and an average Coulombic efficiency of approximately 99.0%, demonstrating high potential for application in SSLSBs. This work provides insights into the electrochemistry performance of SSLSBs and provides a guideline for SPE design for SSLSBs with high specific energy and high safety.

2.
Molecules ; 29(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064889

RESUMEN

This study investigated the structural and electrochemical characteristics of binary and quaternary systems comprising nickel, cobalt, and iron selenides. The powders were obtained via a solvothermal route. X-ray diffraction (XRD) and Raman spectroscopy revealed significant phase diversity. It was observed that increasing the proportion of d-block metals in quaternary systems enhances structural entropy, potentially leading to more homogeneous and stable structures dominated by energetically preferred components such as nickel. The electrochemical analysis indicated that the binary system exhibited a reversible redox reaction, with nickel selenide-based samples demonstrating the highest electrochemically active surface area. Quaternary systems display varying degrees of electrochemical stability. An equal contribution of nickel, cobalt, and iron appears beneficial in achieving stable electrodes. This research contributes to understanding the relationship between transition metal selenides' structural, morphological, and electrochemical properties, providing insights into their potential applications in hydrogen generation.

3.
J Nanobiotechnology ; 22(1): 352, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902695

RESUMEN

In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Oxidación-Reducción , Ácido Selenioso , Selenio , Selenio/metabolismo , Selenio/química , Ácido Selenioso/metabolismo , Caulobacteraceae/metabolismo , Nanopartículas/química , Electricidad , Nanopartículas del Metal/química , Consorcios Microbianos , Análisis de la Demanda Biológica de Oxígeno
4.
Artículo en Inglés | MEDLINE | ID: mdl-38758442

RESUMEN

Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (Fe2O3) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, Fe2O3 on FTO, graphite, and stainless steel) by G. sulfurreducens DL1 (WT) and GSU1771-deficient strain mutant (Δgsu1771). GSU1771 is a transcriptional regulator that controls the expression of several genes involved in electron transfer. Different approaches and experimental tests were carried out with the biofilms grown on the different support materials including structure analysis by confocal laser scanning microscopy (CLSM), characterization of electrochemical activity, and quantification of relative gene expression by RT-qPCR. The gene expression of selected genes involved in EET was analyzed, observing an overexpression of pgcA, omcS, omcM, and omcF from Δgsu1771 biofilms compared to those from WT, also the overexpression of the epsH gene, which is involved in exopolysaccharide synthesis. Although we observed that for the Δgsu1771 mutant strain, the associated redox processes are similar to the WT strain, and more current is produced, we think that this could be associated with a higher relative expression of certain genes involved in EET and in the production of exopolysaccharides despite the chemical environment where the biofilm develops. This study supports that G. sulfurreducens is capable of adapting to the electrochemical environment where it grows.

5.
ChemSusChem ; 17(12): e202301659, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38517381

RESUMEN

Carbon-based electrodes are used in flow batteries to provide active centers for vanadium redox reactions. However, strong controversy exists about the exact origin of these centers. This study systematically explores the influence of structural and functional groups on the vanadium redox reactions at carbon surfaces. Pyridine, phenol and butyl containing groups are attached to carbon felt electrodes. To establish a unique comparison between the model and real-world behavior, both non-activated and commercially used thermally activated felts serve as a substrate. Results reveal enhanced half-cell performance in non-activated felt with introduced hydrophilic functionalities. However, this cannot be transferred to the thermally activated felt. Beyond a decrease in electrochemical activity, a reduced long-term stability can be observed. This work indicates that thermal treatment generates active sites that surpass the effect of functional groups and are even impeded by their introduction.

6.
ACS Appl Mater Interfaces ; 16(5): 6569-6578, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261552

RESUMEN

In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine Ti3C2Tx electrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry. The optimized electrode made of stacked large Ti3C2Tx flakes demonstrated excellent reproducibility and resistance to bending conditions, suggesting their use for reliable, robust, and flexible sensors. Reducing electrode thickness resulted in an amplified faradaic-to-capacitance signal, which is advantageous for this application. This led to the deposition of transparent thin Ti3C2Tx films, which maintained their best performance up to 73% transparency. These findings underscore its promise for high-performance, tailored sensors, marking a significant stride in advancing MXene utilization in next-generation electrochemical sensing technologies. The results encourage the analytical electrochemistry field to take advantage of the unique properties that pristine Ti3C2Tx electrodes can provide in sensing through more parametric studies.

7.
Chem Rec ; 24(1): e202300247, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933973

RESUMEN

The high-temperature solid oxide fuel cells (SOFCs) are the most efficient and green conversion technology for electricity generation from hydrogen-based fuel as compared to conventional thermal power plants. Many efforts have been made to reduce the high operating temperature (>800 °C) to intermediate/low operating temperature (400 °C

8.
J Colloid Interface Sci ; 658: 952-965, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157619

RESUMEN

The development of high-performance electrodes is essential for improving the charge storage performance of rechargeable devices. In this study, local high-entropy C, N co-doped NiCoMnFe-based layered double hydroxide (C/N-NiCoMnFe-LDH, C/N-NCMF) were designed using a novel method. Multi-component synergistic effects can dramatically modulate the surface electron density, crystalline structure, and band-gap of the electrode. Thus, the electrical conductivity, electron transfer, and affinity for the electrolyte can be optimized. Additionally, the C/N-NCMF yielded a high specific capacitance (1454F·g-1) at 1 A·g-1. The electrode also exhibited excellent cycling stability, with 62 % capacitance retention after 5000 cycles. Moreover, the assembled Zn||C/N-NCMF battery and the C/N-NCMF//AC hybrid supercapacitor yielded excellent energy densities of 63.1 and 35.4 Wh·kg-1 at power densities of 1000 and 825 W·kg-1, and superior cycling performance with 69 % and 88.7 % capacitance retention after 1000 and 30,000 cycles, respectively. Furthermore, the electrode maintained high electrochemical activity and stability and ensured high energy density, power density, and cycling stability of the rechargeable devices even at a low temperature (-20 °C). This study paves a new pathway for regulating the electrochemical performance of LDH-based electrodes.

9.
Microb Cell Fact ; 22(1): 202, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803422

RESUMEN

BACKGROUND: The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS: B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS: This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.


Asunto(s)
Bacillus , Fuentes de Energía Bioeléctrica , Melaza , Cinética , ARN Ribosómico 16S , Electricidad , Electrodos
10.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570746

RESUMEN

MXene, a new intercalation pseudocapacitive electrode material, possesses a high theoretical capacitance for supercapacitor application. However, limited accessible interlayer space and active sites are major challenges to achieve this high capacitance in practical application. In order to stimulate the electrochemical activity of MXene to a greater extent, herein, a method of hydrothermal treatment in NaOH solution with reducing reagent-citric acid is first proposed. After this treatment, the gravimetric capacitance of MXene exhibits a significant enhancement, about 250% of the original value, reaching 543 F g-1 at 2 mV s-1. This improved electrochemical performance is attributed to the tailoring of an interlayer structure and surface chemistry state. An expanded and homogenized interlayer space is created, which provides enough space for electrolyte ions storage. The -F terminations are replaced with O-containing groups, which enhances the hydrophilicity, facilitating the electrolyte's accessibility to MXene's surface, and makes MXene show stronger adsorption for electrolyte ion-H+, providing sufficient electrochemical active sites. The change in terminations further leads to the increase in Ti valence, which becomes more prone to reduction. This work establishes full knowledge of the rational MXene design for electrochemical energy storage applications.

11.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514416

RESUMEN

This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.

12.
Biotechnol Adv ; 66: 108175, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37187358

RESUMEN

Exoelectrogenic microorganisms (EEMs) catalyzed the conversion of chemical energy to electrical energy via extracellular electron transfer (EET) mechanisms, which underlay diverse bio-electrochemical systems (BES) applications in clean energy development, environment and health monitoring, wearable/implantable devices powering, and sustainable chemicals production, thereby attracting increasing attentions from academic and industrial communities in the recent decades. However, knowledge of EEMs is still in its infancy as only ∼100 EEMs of bacteria, archaea, and eukaryotes have been identified, motivating the screening and capture of new EEMs. This review presents a systematic summarization on EEM screening technologies in terms of enrichment, isolation, and bio-electrochemical activity evaluation. We first generalize the distribution characteristics of known EEMs, which provide a basis for EEM screening. Then, we summarize EET mechanisms and the principles underlying various technological approaches to the enrichment, isolation, and bio-electrochemical activity of EEMs, in which a comprehensive analysis of the applicability, accuracy, and efficiency of each technology is reviewed. Finally, we provide a future perspective on EEM screening and bio-electrochemical activity evaluation by focusing on (i) novel EET mechanisms for developing the next-generation EEM screening technologies, and (ii) integration of meta-omics approaches and bioinformatics analyses to explore nonculturable EEMs. This review promotes the development of advanced technologies to capture new EEMs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Fuentes de Energía Bioeléctrica/microbiología , Bacterias , Archaea , Transporte de Electrón , Electricidad
13.
Micromachines (Basel) ; 14(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837973

RESUMEN

Over the last few decades, titanium(IV) oxide-based materials have gained particular attention due to their stability, corrosion resistance, photocatalytic activity under UV light, and possibilities for modification. Among various structures, TiO2 nanotubes (NTs) grown on Ti foil or glass substrates and obtained through a simple anodization process are widely used as photocatalysts or photoanodes. During the anodization process, the geometry of the nanotubes (length, distribution, diameter, wall thickness, etc.) is easily controlled, though the obtained samples are amorphous. Heat treatment is required to transform the amorphous material into crystalline material. However, instead of time- and cost-consuming furnace treatment, fast and precise laser annealing is applied as a promising alternative. Nonetheless, laser treatment can result in geometry changes of TiO2 NTs, consequently altering, their electrochemical activity. Moreover, modification of the TiO2 NTs surfaces with transition metals and further laser treatment can result in materials with unique photoelectrochemical properties. In this regard, we gathered the latest achievements in the field of laser-treated titania for this review paper. We mainly focused on single structural and morphological changes resulting from pulsed laser annealing and their influence on the electrochemical properties of titania. Finally, the theoretical basis for and combination of laser- and metal-modifications and their impact on the resulting possibilities for electrochemical water splitting are also discussed.

14.
Materials (Basel) ; 15(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36556589

RESUMEN

In this review, recent achievements in the application of high-entropy alloys (HEAs) and high-entropy oxides (HEOs) in the technology of solid oxide fuel cells (SOFC) are discussed for the first time. The mechanisms of the stabilization of a high-entropy state in such materials, as well as the effect of structural and charge factors on the stability of the resulting homogeneous solid solution are performed. An introduction to the synthesis methods for HEAs and HEOs is given. The review highlights such advantages of high-entropy materials as high strength and the sluggish diffusion of components, which are promising for the use at the elevated temperatures, which are characteristic of SOFCs. Application of the medium- and high-entropy materials in the hydrocarbon-fueled SOFCs as protective layers for interconnectors and as anode components, caused by their high stability, are covered. High-entropy solid electrolytes are discussed in comparison with traditional electrolyte materials in terms of conductivity. High-entropy oxides are considered as prospective cathodes for SOFCs due to their superior electrochemical activity and long-term stability compared with the conventional perovskites. The present review also determines the prioritizing directions in the future development of high-entropy materials as electrolytes and electrodes for SOFCs operating in the intermediate and low temperature ranges.

15.
Front Chem ; 10: 1044313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438870

RESUMEN

Two-dimensional (2D) metal-organic frameworks (MOFs) have been extensively investigated as oxygen evolution reaction (OER) materials because of their numerous advantages such as large specific surface areas, ultrathin thicknesses, well-defined active metal centers, and adjustable pore structures. Five Co-metal-organic frameworks, namely, [Co(L) (4.4'-bbidpe)H2O]n [YMUN 1 (YMUN for Youjiang Medical University for Nationalities)], {[Co2(L)2 (4.4'-bbibp)2]·[Co3(L) (4.4'-bbibp)]·DMAC}n (YMUN 2), [Co(L) (3,5-bip)]n (YMUN 3), [Co(L) (1,4-bimb)]n (YMUN 4), and [Co(L) (4.4'-bidpe)H2O]n (YMUN 5), were designed and fabricated from flexible dicarboxylic acid 1,3-bis(4'-carboxylphenoxy)benzene (H2L) and rigid/flexible imidazole ligands. Their frameworks consist of two-dimensional lamellar networks with a number of differences in their details. Their frameworks are discussed and compared, and their oxygen evolution reaction electrochemical activities and photocatalysis dye degradation properties are investigated.

16.
Chemosphere ; 308(Pt 2): 136434, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36113652

RESUMEN

Microbial fuel cell (MFC) is a promising technology in wastewater recovery driven by microbial metabolism. However, the low power output resulting from the sluggish extracellular electron transfer (EET) between the anode surface and exoelectrogens dramatically restricted the further application. This study fabricated a high-performance anode by decorating porous and conductive electrospinning carbon nanofibers (CNFs). The maximum power density in MFC modified with 14 wt% polyacrylonitrile CNFs (M-CNF14, 9.6 ± 0.2 W m-3) was 1.9 and 2.7 times higher than carbon black modified MFC (M-CB, 5.1 ± 0.1 W m-3) and the blank (M-BA, 3.6 ± 0.1 W m-3), respectively. Denser biofilm and more microbial nanowires were observed in the M-CNF14 anode than in other conditions. Furthermore, the redox peak current of c-type cytochrome was 1.7-21 times higher in M-CNF14 than in the blank control, verifying the preferable EET activity. Several exoelectrogens like Petrimonas and Comamonas were enriched in M-CNF14 and showed a positive correlation to power generation. Besides, more simplified and modular interrelations among exoelectrogens and other bacteria were obtained in M-CNF14. This study revealed the microbial-related mechanism for simultaneously improving EET and exoelectrogens enrichment by CNFs modified anode, providing guidelines for high-performance wastewater recovery.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanofibras , Fuentes de Energía Bioeléctrica/microbiología , Carbono , Citocromos , Electricidad , Electrodos , Electrones , Hollín , Aguas Residuales
17.
Nanomaterials (Basel) ; 12(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014654

RESUMEN

Excessive antibiotic residues in food can cause detrimental effects on human health. The establishment of rapid, sensitive, selective, and reliable methods for the detection of antibiotics is highly in demand. With the inherent advantages of high sensitivity, rapid analysis time, and facile miniaturization, the electrochemical sensors have great potential in the detection of antibiotics. The electrochemical platforms comprising carbon nanomaterials (CNMs) have been proposed to detect antibiotic residues. Notably, with the introduction of functional CNMs, the performance of electrochemical sensors can be bolstered. This review first presents the significance of functional CNMs in the detection of antibiotics. Subsequently, we provide an overview of the applications for detection by enhancing the electrochemical behaviour of the antibiotic, as well as a brief overview of the application of recognition elements to detect antibiotics. Finally, the trend and the current challenges of electrochemical sensors based on CNMs in the detection of antibiotics is outlined.

18.
J Colloid Interface Sci ; 628(Pt A): 131-143, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35917640

RESUMEN

Hierarchical MoO3@MoS2/rGO nanocomposites with highly active sites deliver high power density and energy density are fabricated here by using a simple two-step process, the first one is a direct anion-exchange reaction of the inorganic MoO3 nanorods (NRs) for growth of few-layered MoS2 nanosheets in a perpendicular direction and other is the composition of rGO sheets with core-shell MoO3@MoS2. Interestingly, how the modification of hybrid solvent in the anion-exchange mechanism and the concentration of thiourea impact on the morphologies of core-shell MoO3@MoS2 at quantum level have been inspected. A fruitful synergistic effect between MoO3/MoS2 core-shell nanostructures and rGO nanosheets led to a high surface area and transporting properties are inspected obviously through fundamental studies. Therefore, in eventual, this novel and more active sites MoO3@MoS2/rGO hierarchical structures material has delivered an outstanding specific capacitance of 525.06F/g at 4 A/g when used as an electrode in supercapacitor and more importantly good stability (80.6% at 10 A/g) even after 1000 successive cycles has been procured in an electrode in which MoS2 shell layer prepared at 5 mmol thiourea ratio.

19.
Materials (Basel) ; 15(10)2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35629499

RESUMEN

The (Pt/YSZ)/YSZ sensor unit is the basic component of the NOx sensor, which can detect the emission of nitrogen oxides in exhaust fumes and optimize the fuel combustion process. In this work, the effect of sintering temperature on adhesion property and electrochemical activity of Pt/YSZ electrode was investigated. Pt/YSZ electrodes were prepared at different sintering temperatures. The microstructure of the Pt/YSZ electrodes, as well as the interface between Pt/YSZ electrode and YSZ electrolyte, were observed by SEM. Chronoamperometry, linear scan voltammetry, and AC impedance were tested by the electrochemical workstation. The results show that increasing the sintering temperature (≤1500 °C) helped to improve adhesion property and electrochemical activity of the Pt/YSZ electrode, which benefited from the formation of the porous structure of the Pt/YSZ electrode. For the (Pt/YSZ) electrode/YSZ electrolyte system, O2- in YSZ is converted into chemisorbed O2 on Pt/YSZ, which is desorbed into the gas phase in the form of molecular oxygen; this process could be the rate-controlling step of the anodic reaction. Increasing the sintering temperature (≤1500 °C) could reduce the reaction activation energy of the Pt/YSZ electrode. The activation energy reaches the minimum value (1.02 eV) when the sintering temperature is 1500 °C.

20.
Small ; 18(12): e2105898, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35187788

RESUMEN

Sequential infiltration synthesis (SIS) is an emerging technique for producing inorganic-organic hybrid materials and templated inorganic nanomaterials. The application space for SIS is expanding rapidly in areas such as lithography, filtration, photovoltaics, antireflection, and triboelectricity, but not in the field of electrochemistry. This study performs SIS for the fabrication of porous, transparent, and electrically conductive films of indium zinc oxide (IZO) to evaluate their potential as an electrode for electrochemistry. The electrochemical activity of IZO-coated electrodes is evaluated when their surfaces are modified with ferrocenecarboxylic acid (FcCOOH), a model redox molecule. Results show a 25-fold enhancement in peak current densities mediated by an Fc/Fc+ redox couple for an IZO-coated electrode in comparison with bare electrodes; this is afforded by the porous morphology of the IZO film and the enhanced binding efficiency of FcCOOH on the IZO film. The results confirm the potential of SIS for the preparation of porous transparent conducting oxide electrodes, which will enable the application of SIS-derived materials in various electrochemical fields.


Asunto(s)
Óxidos , Óxido de Zinc , Electroquímica/métodos , Electrodos , Óxidos/química , Porosidad , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA