Your browser doesn't support javascript.
loading
Pristine Ti3C2Tx MXene Enables Flexible and Transparent Electrochemical Sensors.
Noriega, Natalia; Shekhirev, Mikhail; Shuck, Christopher E; Salvage, Jonathan; VahidMohammadi, Armin; Dymond, Marcus K; Lacey, Joseph; Sandeman, Susan; Gogotsi, Yury; Patel, Bhavik Anil.
Afiliación
  • Noriega N; School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.
  • Shekhirev M; Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
  • Shuck CE; Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
  • Salvage J; Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
  • VahidMohammadi A; School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.
  • Dymond MK; Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
  • Lacey J; School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.
  • Sandeman S; Rayner Intraocular Lenses Limited, The Ridley Innovation Centre, Worthing BN14 8AQ, U.K.
  • Gogotsi Y; School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.
  • Patel BA; Department of Materials Science and Engineering and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.
ACS Appl Mater Interfaces ; 16(5): 6569-6578, 2024 Feb 07.
Article en En | MEDLINE | ID: mdl-38261552
ABSTRACT
In the era of the internet of things, there exists a pressing need for technologies that meet the stringent demands of wearable, self-powered, and seamlessly integrated devices. Current approaches to developing MXene-based electrochemical sensors involve either rigid or opaque components, limiting their use in niche applications. This study investigates the potential of pristine Ti3C2Tx electrodes for flexible and transparent electrochemical sensing, achieved through an exploration of how material characteristics (flake size, flake orientation, film geometry, and uniformity) impact the electrochemical activity of the outer sphere redox probe ruthenium hexamine using cyclic voltammetry. The optimized electrode made of stacked large Ti3C2Tx flakes demonstrated excellent reproducibility and resistance to bending conditions, suggesting their use for reliable, robust, and flexible sensors. Reducing electrode thickness resulted in an amplified faradaic-to-capacitance signal, which is advantageous for this application. This led to the deposition of transparent thin Ti3C2Tx films, which maintained their best performance up to 73% transparency. These findings underscore its promise for high-performance, tailored sensors, marking a significant stride in advancing MXene utilization in next-generation electrochemical sensing technologies. The results encourage the analytical electrochemistry field to take advantage of the unique properties that pristine Ti3C2Tx electrodes can provide in sensing through more parametric studies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos