Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612054

RESUMEN

The application of low-density polyethylene (LDPE) has been confined to packaging applications due to its inadequate mechanical and tribological characteristics. We propose enhancing LDPE by integrating hard carbon spheres (CSs) to improve its strength, frictional characteristics, and wear resistance. LDPE/CS composites were created by blending LDPE with varying CS amounts (0.5-8 wt.%). Analysis using scanning electron microscopy and Raman spectroscopy confirmed CS presence in the LDPE matrix, with X-ray diffraction showing no microstructural changes post-blending. Thermal characterization exhibited notable improvements in thermal stability (~4%) and crystallinity (~7%). Mechanical properties such as hardness and Young's modulus were improved by up to 4% and 24%, respectively. Tribological studies on different composite samples with varying surface roughness under various load and speed conditions revealed the critical role of surface roughness in reducing friction by decreasing real contact area and adhesive interactions between asperities. Increased load and speed amplified shear stress on asperities, possibly leading to deformation and failure. Notably, integrating CSs into LDPE, starting at 1 wt.%, effectively reduced friction and wear. The composite with the highest loading (8 wt.%) displayed the most significant tribological enhancement, achieving a remarkable 75% friction reduction and a substantial 78% wear reduction.

2.
ACS Appl Mater Interfaces ; 16(6): 8032-8044, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291784

RESUMEN

Tribological interfaces between silicon-based ceramics, such as Si3N4 or SiC, are characterized by high friction and wear in unlubricated conditions. A solution to this problem is to use them in combination with a hydrogenated amorphous carbon (a-C:H) countersurface from which a passivating carbon film is transferred onto the ceramic surface. However, the mechanisms underlying a stable film transfer process and the conditions that favor it remain elusive. Here, we present friction experiments in ultrahigh vacuum in which friction coefficients lower than 0.01 are achieved by sliding Si3N4 against a-C:H with 36 at. % hydrogen but not against a-C:H with 20 at. % hydrogen. Chemical surface analyses confirm that the superlubric interface forms via the transfer of a hydrocarbon nanofilm onto the Si3N4 surface. Quantum-mechanical simulations reveal that a stable passivating a-C:H film can only be transferred if, after initial cold welding of the tribological interface, the plastic shear deformation is localized within the a-C:H coating. This occurs if the yield shear stress for plastic flow of a-C:H is lower than that of the ceramic and of the shear strength of the a-C:H-ceramic interface, i.e., if the a-C:H hydrogen content ranges between ∼30 and ∼50 at. %. While the importance of a relatively high hydrogen content to achieve an efficient passivation of a-C:H surfaces in a vacuum is well-documented, this work reveals how the hydrogen content is also crucial for obtaining a stable a-C:H transfer film. These results can be extended to glass, SiC, and steel, supporting the generality of the proposed mechanism.

3.
Materials (Basel) ; 16(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37241267

RESUMEN

Dry friction between seal faces, caused by unstable or extreme operating conditions, significantly affects the running stability and service life of mechanical seals. Therefore, in this work, nanocrystalline diamond (NCD) coatings were prepared on the surface of silicon carbide (SiC) seal rings by hot filament chemical vapor deposition (HFCVD). The friction test results under dry environment reveals that the coefficient of friction (COF) of SiC-NCD seal pairs is about 0.07-0.09, which were reduced by 83-86% compared to SiC-SiC seal pairs. The wear rate of SiC-NCD seal pairs is relatively low, ranging from 1.13 × 10-7 mm3/N·m to 3.26 × 10-7 mm3/N·m under different test conditions, which is due to the fact that the NCD coatings prevent adhesive and abrasive wear between the SiC seal rings. The analysis and observation of the wear tracks illustrate that the excellent tribological performance of the SiC-NCD seal pairs is due to a self-lubricating amorphous layer formed on the worn surface. In conclusion, this work highlights a pathway to enable mechanical seals to satisfy the high application requirements under highly parametric working conditions.

4.
Materials (Basel) ; 16(4)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36836986

RESUMEN

Aluminum alloys, which have been widely used in various manufacturing industries as an upper layer of bearing inserts, are alloyed with Sn to decrease the intensity of adhesive wear. A relationship between the mechanical properties, wear resistance, and structure of sintered Al-30Sn alloy containing a large amount of the soft phase was studied in this work. The above-mentioned characteristics were determined by testing the investigated material under compression and wear under dry friction in the pin-on-disk geometry at a sliding speed of 0.6 m/s and pressures of 1-5 MPa. The studied alloy was prepared by sintering of compacts consisting of a mixture of commercial powders in a vacuum furnace at a temperature of 600 °C for an hour. Then, the sintered Al-30Sn samples were subjected to processing by equal channel angular pressing (ECAP) with routes A and C. It has been established that the hardening value of the alloy subjected to ECAP virtually does not depend on the Sn content, but it depends on the number of passes and the processing route. The maximum increase in the strength of the alloy was found after the first and second passes. At the fixed Sn content, its effect on the wear resistance of the alloy does not depend on the strain hardening value of the aluminum matrix.

5.
Materials (Basel) ; 16(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36676278

RESUMEN

Mesocarbon microbead-silicon carbide (MCMB-SiC) composites were prepared by hot-press sintering (2100 °C/40 MPa/1 h) with two different graphitized MCMBs as the second phase, which exhibited good self-lubricating properties. The effects of the graphitization degree of the MCMBs on the microstructure and properties of the composites were investigated contrastively. The results showed that the composites that added raw MCMBs with a low degree of graphitization had excellent self-sintering properties, higher densities, and better mechanical properties; by comparison, the composites that added mature MCMBs with a high degree of graphitization, which has regular and orderly lamellar structures, not only had good mechanical properties but also exhibited a lower and more stable dry friction coefficient (0.35), despite the higher wear rate (2.66 × 10-6 mm3·N-1·m-1). Large amounts of mature MCMBs were peeled off during the friction process to form a uniform and flat graphite lubricating film, which was the main reason for reducing the dry friction coefficient of the self-lubricating composites and making the friction coefficient more stable.

6.
Materials (Basel) ; 15(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35591582

RESUMEN

Friction in boundary lubrication is strongly influenced by the atomic structure of the sliding surfaces. In this work, friction between dry amorphous carbon (a-C) surfaces with chemisorbed fragments of lubricant molecules is investigated employing molecular dynamic simulations. The influence of length, grafting density and polarity of the fragments on the shear stress is studied for linear alkanes and alcohols. We find that the shear stress of chain-passivated a-C surfaces is independent of the a-C density. Among all considered chain-passivated systems, those with a high density of chains of equal length exhibit the lowest shear stress. However, shear stress in chain-passivated a-C is consistently higher than in a-C surfaces with atomic passivation. Finally, surface passivation species with OH head groups generally lead to higher friction than their non-polar analogs. Beyond these qualitative trends, the shear stress behavior for all atomic- and chain-passivated, non-polar systems can be explained semi-quantitatively by steric interactions between the two surfaces that cause resistance to the sliding motion. For polar passivation species electrostatic interactions play an additional role. A corresponding descriptor that properly captures the interlocking of the two surfaces along the sliding direction is developed based on the maximum overlap between atoms of the two contacting surfaces.

7.
Polymers (Basel) ; 14(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35566926

RESUMEN

Coefficient of friction values, wear and surface roughness differences are revealed using pin-on-disc test apparatus examinations under three pv loads, where samples are cut from a reference, unused, and several differently aged and dimensioned, used, dry friction fiber-reinforced hybrid composite clutch facings. Tests are characterized by surface activation energy and separated into Trend 1, 'clutch killer', and 2, 'moderate', groups from our previous study. The results reveal that acceptable, 0.41-0.58, coefficient of friction values among Trend 1 specimens cannot be reached during high pv tests, though the -0.19--0.11 difference of minimum and maximum pv results disappears when activation energy reaches 179 MJ. The maximum pv friction coefficient can decrease by up to 30% at working diameter due to clutch killer test circumstances, as 179 MJ surface activation energy is applied, while by moderate tests such losses can only be detected close to 2000 MJ energy values among small-sized facings. Besides that, Trend 2 specific wear values are the third of trend 1 results at inner diameter specimens. Compared to reference facing values, specific wear results at working diameter under maximum pv decrease by 47-100%, while increasing specific wear during lifetime can only be detected at the inner diameter of facings enduring clutch killer tests or that are small-sized facings. Among Trend 1 radial and tangential Ra delta results, inner diameter samples provide more decreasing surface roughness data, while by Trend 2 values, the opposite relation is detected. Apart from the effects of activation energy, mileage and driver profile, facing size and friction diameter influence is also revealed.

8.
Micromachines (Basel) ; 13(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35630178

RESUMEN

Currently used planar manipulation methods that utilize oscillating surfaces are usually based on asymmetries of time, kinematic, wave, or power types. This paper proposes a method for omnidirectional manipulation of microparticles on a platform subjected to circular motion, where the motion of the particle is achieved and controlled through the asymmetry created by dynamic friction control. The range of angles at which microparticles can be directed, and the average velocity were considered figures of merit. To determine the intrinsic parameters of the system that define the direction and velocity of the particles, a nondimensional mathematical model of the proposed method was developed, and modeling of the manipulation process was carried out. The modeling has shown that it is possible to direct the particle omnidirectionally at any angle over the full 2π range by changing the phase shift between the function governing the circular motion and the dry friction control function. The shape of the trajectory and the average velocity of the particle depend mainly on the width of the dry friction control function. An experimental investigation of omnidirectional manipulation was carried out by implementing the method of dynamic dry friction control. The experiments verified that the asymmetry created by dynamic dry friction control is technically feasible and can be applied for the omnidirectional manipulation of microparticles. The experimental results were consistent with the modeling results and qualitatively confirmed the influence of the control parameters on the motion characteristics predicted by the modeling. The study enriches the classical theories of particle motion on oscillating rigid plates, and it is relevant for the industries that implement various tasks related to assembling, handling, feeding, transporting, or manipulating microparticles.

9.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833195

RESUMEN

Wear and surface microgeometry aspects of fiber-reinforced hybrid composite dry friction clutch facings are revealed in a novel way: after different, real life automotive tests during their lifetime. This study examines and reveals the tribological response of friction material surfaces to real life application conditions with two different facing diameters and in two directions. Along the increasing activation energy scale, wear values increased according to two different trends, sorting tests into two main groups, namely 'clutch killer' and 'moderate'. Wear results also highlighted the influence of mileage and test conditions, with clutch killer tests also creating considerable wear-more than 0.1 mm-at inner diameters: 1% higher wear was generated by 90% higher mileage; another 1% increment could be caused by insufficient cooling time or test bench-specific conditions. Surface roughness values trends varied accordingly with exceptions revealing effects of facing size, friction diameter and directions and test conditions: small (S) facings produced significantly decreased Rmax roughness, while large (L) and medium (M) size facings had increased roughness values; Rmax results showed the highest deviations among roughness values in radial direction; tests run with trailer and among city conditions resulted in more than 2% thickness loss and a 40-50% roughness decrease.

10.
Sensors (Basel) ; 21(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34770585

RESUMEN

Currently used vibrational transportation methods are usually based on asymmetries of geometric, kinematic, wave, or time types. This paper investigates the vibrational transportation of objects on a platform that is subjected to sinusoidal displacement cycles, employing periodic dynamic dry friction control. This manner of dry friction control creates an asymmetry, which is necessary to move the object. The theoretical investigation on functional capabilities and transportation regimes was carried out using a developed parametric mathematical model, and the control parameters that determine the transportation characteristics such as velocity and direction were defined. To test the functional capabilities of the proposed method, an experimental setup was developed, and experiments were carried out. The results of the presented research indicate that the proposed method ensures smooth control of the transportation velocity in a wide range and allows it to change the direction of motion. Moreover, the proposed method offers other new functional capabilities, such as a capability to move individual objects on the same platform in opposite directions and at different velocities at the same time by imposing different friction control parameters on different regions of the platform or on different objects. In addition, objects can be subjected to translation and rotation at the same time by imposing different friction control parameters on different regions of the platform. The presented research extends the classical theory of vibrational transportation and has a practical value for industries that operate manufacturing systems performing tasks such as handling and transportation, positioning, feeding, sorting, aligning, or assembling.

11.
Materials (Basel) ; 14(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34683776

RESUMEN

Friction models are proposed for anisotropic and heterogeneous dry friction on boundaries of polymer solids. Unit vectors and oriented angles of sliding velocities, radii of curvature and unit normal vectors of sliding trajectories are taken as independent variables in constitutive equations of anisotropic and heterogeneous friction. Heterogeneous dry friction of a polymer pin in pin-on-disc tests is illustrated in the case of Archimedean spiral trajectory. Individual molecular chains composing polymer materials can move inside the material with a high degree of friction anisotropy. The resistance of macromolecule motion is considered with respect to micromechanical models of macromolecules, their kinematics, and friction laws. Two approaches are applied for modeling of anisotropic friction inside polymer materials: continuum-based models (anisotropic viscous friction) and micromechanical models (anisotropic dry friction). Examples of macromolecule dry friction are considered under conditions of spinning and sliding of a disc-like macromolecule and snake-like sliding of a long macromolecule.

12.
Materials (Basel) ; 14(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34576452

RESUMEN

This paper reports research on the frictional behavior of a textured surface against several materials under dry and lubricated conditions, and this is aimed to provide design guidelines on the surface texturing for wide-ranging industrial applications. Experiments were performed on a tribo-tester with the facility of simulating A ball-on-plate model in reciprocating motion under dry, oil-lubricated, and water-lubricated conditions. To study the frictional behavior of textured SiC against various materials, three types of ball-bearing -elements, 52100 steel, silicon nitride (Si3N4), and polytetrafluoroethylene (PTFE), were used. Friction and wear performance of an un-textured surface and two types of widely used micro-scale texture surfaces, grooves and circular dimples, were examined and compared. The results demonstrated that the effect of surface textures on friction and wear performance is influenced by texture parameters and the materials of friction pairs. The circular-dimple texture and the groove texture, with certain texture parameters, played a positive role in improving friction and wear performance under specific operating conditions used in this research for SiC-steel and SiC-Si3N4 friction pairs; however, there was no friction and wear improvement for the textured SiC-PTFE friction pair. The results of this study offer an understanding and a knowledge base to enhance the performance of bearing elements in complex interacting systems.

13.
Micromachines (Basel) ; 12(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34577730

RESUMEN

Currently used nonprehensile manipulation systems that are based on vibrational techniques employ temporal (vibrational) asymmetry, spatial asymmetry, or force asymmetry to provide and control a directional motion of a body. This paper presents a novel method of nonprehensile manipulation of miniature and microminiature bodies on a harmonically oscillating platform by creating a frictional asymmetry through dynamic dry friction control. To theoretically verify the feasibility of the method and to determine the control parameters that define the motion characteristics, a mathematical model was developed, and modeling was carried out. Experimental setups for miniature and microminiature bodies were developed for nonprehensile manipulation by dry friction control, and manipulation experiments were carried out to experimentally verify the feasibility of the proposed method and theoretical findings. By revealing how characteristic control parameters influence the direction and velocity, the modeling results theoretically verified the feasibility of the proposed method. The experimental investigation verified that the proposed method is technically feasible and can be applied in practice, as well as confirmed the theoretical findings that the velocity and direction of the body can be controlled by changing the parameters of the function for dynamic dry friction control. The presented research enriches the classical theories of manipulation methods on vibrating plates and platforms, as well as the presented results, are relevant for industries dealing with feeding, assembling, or manipulation of miniature and microminiature bodies.

14.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34451021

RESUMEN

This paper presents a novel method for nonprehensile manipulation of parts on a circularly oscillating platform when the effective coefficient of dry friction between the part and the platform is being dynamically controlled. Theoretical and experimental analyses have been performed to validate the proposed method and to determine the control parameters that define the characteristics of the part's motion. A mathematical model of the manipulation process with dynamic dry friction control was developed and solved. The modeling showed that by changing the phase shift between the function for dynamic dry friction control and the function defining the circular motion of the platform, the part can be moved in any direction as the angle of displacement can be controlled in a full range from 0 to 2π. The nature of the trajectory and the mean displacement velocity of the part mainly depend on the width of the rectangular function for dynamic dry friction control. To verify the theoretical findings, an experimental setup was developed, and experiments of manipulation were carried out. The experimental results qualitatively confirmed the theoretical findings. The presented analysis enriches the classical theories of nonprehensile manipulation on oscillating platforms, and the presented findings are relevant for mechatronics, robotics, mechanics, electronics, medical, and other industries.


Asunto(s)
Electrónica , Robótica , Fricción , Modelos Teóricos , Movimiento (Física)
15.
Materials (Basel) ; 15(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35009323

RESUMEN

The disadvantage of antifriction Al-Sn alloys with high tin content is their low bearing capacity. To improve this property, the aluminum matrix of the alloys was alloyed with zinc. The powder of Al-10Zn alloy was blended with the powder of pure tin in the proportion of 40/60 (wt.%). The resulting mixture of the powders was compacted in briquettes and sintered in a vacuum furnace. The sintered briquettes were subjected to subsequent pressing in the closed press mold at an elevated temperature. After this processing, the yield strength of the sintered (Al-10Zn)-40Sn composite was 1.6 times higher than that of the two-phase Al-40Sn one. The tribological tests of the composites were carried out according to the pin-on-disk scheme without lubrication at pressures of 1-5 MPa. It was established that the (Al-10Zn)-40Sn composite has higher wear resistance compared with the Al-40Sn one. However, this advantage becomes insignificant with an increase in the pressure. It was found that the main wear mechanism of the investigated composites under the dry friction process is a delamination of their highly deformed matrix grains.

16.
Micromachines (Basel) ; 13(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35056235

RESUMEN

Friction control is a vital technology for reaching sustainable development goals, and surface texturing is one of the most effective and efficient techniques for friction reduction. This study investigated the performance of a micro-dimpled texture under varying texture densities and experimental conditions. Reciprocating sliding tests were performed to evaluate the effects of the micro-dimpled texture on friction reduction under different normal loads and lubrication conditions. The results suggested that a micro-dimpled texture could reduce the coefficient of friction (CoF) under dry and lubricated conditions, and high dimple density results in a lower CoF. The dominant mechanism of the micro-dimpled texture's effect on friction reduction was discussed, and surface observation and simulation suggested that a micro-dimpled texture could reduce the contact area at the friction interface, thereby reducing CoF.

17.
Materials (Basel) ; 13(20)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053686

RESUMEN

Fiber-reinforced hybrid composites are the most commonly used dry-friction materials in the automotive industry. On the other hand, the great variety of components utilized these days in such material systems often requires identification investigations for a complex characterization. The development history of clutch materials was reviewed, highlighting and understanding the milestones and efforts leading to the creation of these materials. Investigations were performed to determine mechanical stiffness matrix parameters and thermal properties of a woven fiber yarn (glass fiber with aromatic polyamide, copper, and poly-acrylic-nitrile (PAN) reinforced friction material, revealing and solving challenges faced during identification efforts. This study grants an effective reference and a novel guidance for material identification methods for similar complex materials, and the results provide input parameters for thermomechanical simulation contact model development, which will cover friction material lifetime effects on dry clutch tribology in a future study.

18.
Beilstein J Nanotechnol ; 5: 1091-103, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25161844

RESUMEN

The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

19.
Scanning ; 36(1): 30-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23440686

RESUMEN

Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA