Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.561
Filtrar
1.
Cureus ; 16(9): e69301, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282490

RESUMEN

Cutaneous malignant melanoma is one of the most aggressive forms of skin cancer and thus, a high mortality has been reported over decades. The prognosis for melanoma varies widely based on several factors, including the stage at which it is diagnosed, the location and thickness of the tumor, the patient's age and overall health, and specific genetic factors associated with melanoma. Therapeutic options include checkpoint inhibitors, regardless of V-Raf Murine Sarcoma Viral Oncogene Homolog B status (BRAF), and targeted therapy (anti-BRAF) in the adjuvant or metastatic setting. Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment but predicting which patients will benefit from these therapies remains challenging. Biomarkers like leukocytes, neutrophils, eosinophils, basophils, platelets, and other peripheral blood biomarkers have been investigated for their potential to predict responses to ICIs. Tumor mutational burden (TMB), circulating tumor DNA (ctDNA), and soluble PD-L1 (sPD-L1) have emerged as potential biomarkers for predicting responses to ICIs. Elevated baseline levels of ctDNA and elevated sPD-L1 levels have been associated with worse prognosis in melanoma patients. High TMB is often associated with better responses to ICIs in melanoma. Here we present a case from our department, of a 57-year-old patient, diagnosed in 2019 with stage IV - pT4cNx cM1 (lymph nodes metastases) and suspicion of lung metastases, BRAF wild-type right hallux malignant melanoma. Due to impressive results, first-line treatment with ICIs nivolumab and ipilimumab was the preferred treatment of choice, which showed a favorable response, with regression of oncological disease after the first cycle, and achieving complete response afterward. Unfortunately, the treatment was discontinued due to severe hepatic and pancreatic toxicity, but the favorable response to immunotherapy has been maintained for four years and is ongoing. Identifying predictive biomarkers is important to achieve the best response for the patient, with minimal adverse events, especially if long-term clinical benefit can be reached.

2.
J Natl Cancer Cent ; 4(2): 153-161, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39282586

RESUMEN

Objective: Circulating tumor DNA (ctDNA) is increasingly being used as a potential prognostic biomarker in cancer patients. We aimed to assess the prognostic value of ctDNA in different subtypes of breast cancer patients throughout the whole treatment cycle. Materials and methods: PubMed, Web of Science, Embase, Cochrane Library, Scopus, and clinical trials.gov databases were searched from January 2016 to May 2022. The following search terms were used: ctDNA OR circulating tumor DNA AND breast cancer OR breast carcinoma. Only studies written in English were included. The following pre-specified criteria should be met for inclusion: (i) original articles, conference abstracts, etc.; (ii) patients with breast cancer; (iii) ctDNA measurement; and (iv) clinical outcome data such as recurrence-free survival (RFS) and overall survival (OS). The random-effects model was preferred considering the potential heterogeneity across studies. The main outcomes are ctDNA detection rate and postoperative long-term outcomes (RFS and OS). Results: A total of 24 studies were screened. At every measurement time, the ctDNA detection rate of the HR+ subgroup was similar to that of the HR- subgroup (P = 0.075; P = 0.458; P = 0.744; and P = 0.578), and the ctDNA detection rate of the HER2+ subgroup was similar to that of the HER2- subgroup (P = 0.805; P = 0.271; P = 0.807; and P = 0.703). In the HR+ subgroup, RFS and OS of ctDNA positive patients were similar to those of ctDNA negative patients (P = 0.589 and P = 0.110), while RFS and OS of the ctDNA positive group was significantly shorter than those of the ctDNA negative patients in the HR- subgroup (HR = 4.03, P < 0.001; HR = 3.21, P < 0.001). According to HER grouping, the results were the same as above. In the triple negative breast cancer (TNBC) subgroup, the RFS and OS of ctDNA-positive patients was significantly shorter than of the ctDNA negative patients before and after surgery. Conclusions: ctDNA was more predictive of recurrence-free survival and overall survival in the HR- subgroup than in the HR+ subgroup, and the same result was showed in the HER2- subgroup vs. HER2+ subgroup. The prognosis of the TNBC subtype is closely related to ctDNA before and after surgery.

3.
Clin Res Hepatol Gastroenterol ; : 102464, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276854

RESUMEN

INTRODUCTION: The prognostic value of baseline variant allele frequency (VAF) in circulating tumor DNA (ctDNA) of colorectal cancer liver metastases (CRLM) patients after curative resection was rarely investigated. METHODS: A single-center prospective study was performed to investigate the prognostic impact of baseline VAF in ctDNA and matched tumor tissues of CRLM patients after curative resection between May 2019 and May 2021 by the Illumina NovoSeq 6000 platform. The relationship of the tumor burden score (TBS) and the VAF in ctDNA and matched tumor tissues was evaluated by the Pearson correlation method. The survival curves of recurrence-free survival (RFS) and overall survival (OS) were plotted. Factors associated with RFS were calculated using Cox regression analysis, and an integrated prognostic model using significant baseline variables was proposed. RESULTS: There were 121 patients with baseline ctDNA and matched tumor tissues enrolled in the study. A total of 417 mutations spanning 20 genes were identified in baseline tumor tissues of 119/121 (98.3%) cases. The overall mutations in tumor tissues were completely covered by ctDNA in 52 of 121(43.0%) patients. Baseline VAF in ctDNA but not in tumor tissues was significantly correlated to TBS of CRLM (R=0.36, p<0.001). Significantly longer RFS but not OS was observed in patients with lower VAF in ctDNA compared to those with higher one (p<0.001 and p=0.33 respectively). Multivariate Cox regression analysis showed higher VAF in baseline ctDNA was an independent risk factor for RFS. An integrated prognostic model including baseline metastasis location and VAF in ctDNA outperformed the traditional CRS model in predicting RFS. CONCLUSION: Baseline VAF in ctDNA but not in tumor tissues influenced RFS of CRLM patients after curative resection.

4.
Front Cell Dev Biol ; 12: 1449232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239557

RESUMEN

Despite recent advances in cancer diagnostics and treatment, the mortality associated with lung cancer is still the highest in the world. Late-stage diagnosis, often accompanied by metastasis, is a major contributor to the high mortality rates, emphasizing the urgent need for reliable and readily accessible diagnostic tools that can detect biomarkers unique to lung cancer. Circulating factors, such as circulating tumor DNA and extracellular vesicles, from liquid biopsy have been recognized as diagnostic or prognostic markers in lung cancer. Numerous clinical studies are currently underway to investigate the potential of circulating tumor DNA, circulating tumor RNA, exosomes, and exosomal microRNA within the context of lung cancer. Those clinical studies aim to address the poor diagnostics and limited treatment options for lung cancer, with the ultimate goal of developing clinical markers and personalized therapies. In this review, we discuss the roles of each circulating factor, its current research status, and ongoing clinical studies of circulating factors in non-small cell lung cancer. Additionally, we discuss the circulating factors specifically found in lung cancer stem cells and examine approved diagnostic assays designed to detect circulating biomarkers in lung cancer patients.

5.
Blood Rev ; : 101237, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39261219

RESUMEN

Liquid biopsy, particularly circulating tumor DNA (ctDNA), has drawn a lot of attention as a non- or minimal-invasive detection approach for clinical applications in patients with cancer. Many hematological malignancies are well suited for serial and repeated ctDNA surveillance due to relatively high ctDNA concentrations and high loads of tumor-specific genetic and epigenetic abnormalities. Progress of detecting technology in recent years has improved sensitivity and specificity significantly, thus broadening and strengthening the potential utilities of ctDNA including early diagnosis, prognosis estimation, treatment response evaluation, minimal residual disease monitoring, targeted therapy selection, and immunotherapy surveillance. This manuscript reviews the detection methodologies, clinical application and future challenges of ctDNA in hematological malignancies, especially for lymphomas, myeloma and leukemias.

6.
Cancer Biomark ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39269823

RESUMEN

BACKGROUND: Circulating tumor DNA (ctDNA) is a promising non-invasive marker for detection, diagnosis, treatment selection, and prognosis of hepatocellular carcinoma (HCC). OBJECTIVE: This study aimed to examine the utility of ctDNA as a prognostic and predictive tool in HCC patients treated with nivolumab. METHODS: We analyzed pre-treatment ctDNA from 44 HCC patients using comprehensive genomic testing on a commercially available platform. We utilized log rank test and univariate Cox models to correlate overall survival (OS) and progression-free survival (PFS) with ctDNA expressions. RESULTS: Of 44 patients, 77.3% were men with median age of 67 years. All but 3 patients had at least one alteration identified, and TP53 was the most commonly altered gene (52.3%). Median OS was 17.5 months (95% CI: 12.7, NA). Mutations involving PIK3CA, BRCA1, and CCND1 amplification were associated with shorter OS (P 0.0001, 0.0001 and 0.01, respectively). Median PFS time was 4.01 months (95% CI: 3.06, 9.33). Mutations involving KIT and PIK3CA were associated with shorter PFS (P 0.0001 and 0.0004, respectively), while mutation involving CTNNB1 were associated with longer PFS (p= 0.04). CONCLUSIONS: ctDNA profiling may provide a benefit for prediction of survival and progression of HCC patients treated with nivolumab. Future studies are needed for confirmation.

7.
Future Sci OA ; 10(1): 2395244, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39254097

RESUMEN

The emergence of multicancer early detection (MCED) tests holds promise for improving early cancer detection and public health outcomes. However, positive MCED test results require confirmation through recommended cancer diagnostic imaging modalities. To address these challenges, we have developed a consultation and work-up protocol for definitive diagnostic results post MCED testing, named SPOT-MAS. Developed through circulating tumor DNA (ctDNA) analysis and in line with professional guidelines and advisory board consensus, this protocol standardizes information to aid general practitioners in accessing, interpreting and managing SPOT-MAS results. Clinical effectiveness is demonstrated through a series of identified cancer cases. Our research indicates that the protocol could empower healthcare professionals to confidently interpret circulating tumor DNA test results for 5 common types of cancer, thereby facilitating the clinical integration of MCED tests.


New tests can now screen for multiple types of cancer early, offering hope for better health outcomes. If one of these tests shows a positive result, doctors need to confirm it with imaging tests. We have developed a guide to help doctors understand and confirm these results. This guide could help healthcare professionals interpret results for five common types of cancer, making it easier to use these tests in regular medical practice.

8.
Comput Biol Chem ; 113: 108190, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39232258

RESUMEN

According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1-4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (i.e. Ct-DNA) were studied via viscometric and spectrophotometric titration. The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) > malonic (L2) > succinic (L3) ones. From Kb = binding constant, and ∆Gb≠ = Gibb's free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1-4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1-4), 14.32, 13.28, 10.87, and 12.41 × 107 mol-1 dm3, and -45.17, -43.24, -43.75, and -44.05 kJ mol-1, respectively. DFT and docking studies were achieved to support the current work.

9.
Future Oncol ; : 1-10, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229786

RESUMEN

Somatic KIT activating mutations drive most gastrointestinal stromal tumors (GISTs). Disease progression eventually develops with first-line imatinib, commonly due to KIT secondary mutations, and different kinase inhibitors have various levels of treatment efficacy dependent on specific acquired resistance mutations. Ripretinib is a broad-spectrum switch-control KIT/PDGFRA tyrosine kinase inhibitor for patients with advanced GIST who received prior treatment with three or more kinase inhibitors, including imatinib. Exploratory baseline circulating tumor DNA analysis from the second-line INTRIGUE trial determined that patients with advanced GIST previously treated with imatinib harboring primary KIT exon 11 mutations and secondary resistance mutations restricted to KIT exons 17/18 had greater clinical benefit with ripretinib versus sunitinib. We describe the rationale and design of INSIGHT (NCT05734105), an ongoing Phase III open-label study of ripretinib versus sunitinib in patients with advanced GIST previously treated with imatinib exclusively harboring KIT exon 11 + 17/18 mutations detected by circulating tumor DNA.Clinical Trial Registration: NCT05734105 (ClinicalTrials.gov).


Gastrointestinal stromal tumor (GIST) is rare, but it is the most common mesenchymal tumor (a type of tumor that develops from cells which give rise to soft tissues) of the gastrointestinal tract. The primary treatment for advanced GIST is medication that targets the abnormal mechanisms in cancer cells in order to block tumor growth and spread. Ripretinib is an inhibitor of a protein known as KIT, which is a member of the tyrosine kinase protein family and is involved in the growth of GIST. In a Phase III clinical trial called INTRIGUE, the effects of ripretinib and another receptor tyrosine kinase inhibitor, sunitinib, were compared in patients with advanced GIST previously treated with the drug imatinib. An exploratory analysis from the INTRIGUE trial that characterized baseline circulating tumor DNA in the blood showed a greater clinical benefit with ripretinib versus sunitinib in patients with gene mutations solely occurring in KIT exon 11 + 17 and/or 18 (exon 11 + 17/18). This article describes the rationale and design for a Phase III clinical trial called INSIGHT that will evaluate the benefit of ripretinib compared with sunitinib in patients with advanced GIST whose tumors have mutations in KIT exon 11 and KIT exon 17 and/or 18. Patients will receive ripretinib or sunitinib in 6-week cycles, and investigators will assess survival without cancer progression as the primary outcome, and overall survival, and response of the tumor to these two drugs as secondary outcomes.

10.
Cancer Med ; 13(17): e70101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39235099

RESUMEN

INTRODUCTION: Hotspots (HS) mutations in the PIK3CA gene may lead to poorer oncological outcomes and endocrine resistance in advanced breast cancer (BC), but their prognostic role in early-stage disease remains controversial. The overall agreement within plasma and tissue methods has not been well explored. Our aim was to correlate tissue and plasma approaches and to analyze the prognostic impact of PIK3CA mutations (PIK3CAm) in HR+/HER2- BC. METHODS: A retrospective and unicentric analysis of PIK3CA mutational status in tissue and plasma samples by Cobas®PIK3CA Mutation Kit in patients with HR+/HER2- BC. RESULTS: We analyzed 225 samples from 161 patients with luminal BC. PIK3CA mutations were identified in 62 patients (38.5%), of which 39.6% were found in tissue and 11.8% in plasma. In advanced disease, plasma and tissue correlation rate was performed in 64 cases, with an overall agreement of 70.3%. Eighty patients were treated with CDK4/6 inhibitors + endocrine therapy. We observed a moderately worse progression-free survival (PFS) in PIK3CAm versus wild-type (WT) (24 m vs. 30 m; HR = 1.39, p = 0.26). A subanalysis was carried out based on exons 9 and 20, which showed a statistically poorer PFS in PIK3CAm exon 9 versus 20 population (9.7 m vs. 30.3 m; HR = 2.84; p = 0.024). Furthermore, detection of PIK3CAm in plasma was linked to a worse PFS vs PIK3CAm detection just in tissue (12.4 vs. 29.3; HR = 2.4; p = 0.08). CONCLUSIONS: Our findings suggest the PIK3CA evaluation in tissue as the diagnostic method of choice, however, additional investigations are required to improve the role of liquid biopsy in the PIK3CA assessment. PIK3CAm show worse outcomes in advanced luminal BC, especially in exon 9 mutation carriers, despite visceral involvement, prior exposure to endocrine therapy or detection of PIK3CAm in plasma, with an unclear prognosis in early-stage disease. Nonetheless, this should be validated in a prospective cohort study.


Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Fosfatidilinositol 3-Quinasa Clase I , Mutación , Receptor ErbB-2 , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/sangre , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Pronóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Anciano , Estudios Retrospectivos , Adulto , Anciano de 80 o más Años , Receptores de Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Estrógenos/metabolismo
11.
BMC Genomics ; 25(1): 827, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227777

RESUMEN

BACKGROUND: Circulating tumour DNA (ctDNA) is a subset of cell free DNA (cfDNA) released by tumour cells into the bloodstream. Circulating tumour DNA has shown great potential as a biomarker to inform treatment in cancer patients. Collecting ctDNA is minimally invasive and reflects the entire genetic makeup of a patient's cancer. ctDNA variants in NGS data can be difficult to distinguish from sequencing and PCR artefacts due to low abundance, particularly in the early stages of cancer. Unique Molecular Identifiers (UMIs) are short sequences ligated to the sequencing library before amplification. These sequences are useful for filtering out low frequency artefacts. The utility of ctDNA as a cancer biomarker depends on accurate detection of cancer variants. RESULTS: In this study, we benchmarked six variant calling tools, including two UMI-aware callers for their ability to call ctDNA variants. The standard variant callers tested included Mutect2, bcftools, LoFreq and FreeBayes. The UMI-aware variant callers benchmarked were UMI-VarCal and UMIErrorCorrect. We used both datasets with known variants spiked in at low frequencies, and datasets containing ctDNA, and generated synthetic UMI sequences for these datasets. Variant callers displayed different preferences for sensitivity and specificity. Mutect2 showed high sensitivity, while returning more privately called variants than any other caller in data without synthetic UMIs - an indicator of false positive variant discovery. In data encoded with synthetic UMIs, UMI-VarCal detected fewer putative false positive variants than all other callers in synthetic datasets. Mutect2 showed a balance between high sensitivity and specificity in data encoded with synthetic UMIs. CONCLUSIONS: Our results indicate UMI-aware variant callers have potential to improve sensitivity and specificity in calling low frequency ctDNA variants over standard variant calling tools. There is a growing need for further development of UMI-aware variant calling tools if effective early detection methods for cancer using ctDNA samples are to be realised.


Asunto(s)
Benchmarking , ADN Tumoral Circulante , Secuenciación de Nucleótidos de Alto Rendimiento , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Variación Genética , Neoplasias/genética , Neoplasias/sangre , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Sensibilidad y Especificidad
12.
Cureus ; 16(9): e68881, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39246640

RESUMEN

Numerous genomic-based early detection screening tests are being developed. These tests have the potential to revolutionize current single-organ screening paradigms, especially in gastrointestinal cancers. In this review, we underscore the performance of these genomic-based early detection tests based on prospective clinical trials. Moreover, we discuss a professional advancement for gastroenterologists in the diagnostic assessment of individuals who are cancer signal positive.

13.
Front Mol Biosci ; 11: 1423470, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165643

RESUMEN

Identifying mutations in cancer-associated genes to guide patient treatments is essential for precision medicine. Circulating tumor DNA (ctDNA) offers valuable insights for early cancer detection, treatment assessment, and surveillance. However, a key issue in ctDNA analysis from the bloodstream is the choice of a technique with adequate sensitivity to identify low frequent molecular changes. Next-generation sequencing (NGS) technology, evolving from parallel to long-read capabilities, enhances ctDNA mutation analysis. In the present review, we describe different NGS approaches for identifying ctDNA mutation, discussing challenges to standardized methodologies, cost, specificity, clinical context, and bioinformatics expertise for optimal NGS application.

14.
Front Oral Health ; 5: 1426507, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157206

RESUMEN

Oral cancer is the 6th most common type of cancer worldwide, and oral squamous cell carcinoma (OSCC) accounts for >90% of oral cancers. It is a major health problem, particularly in low- and middle-income countries (LMICs), due to both its high incidence and significant mortality and morbidity. Despite being a global burden, and even with the significant advancement in the management of OSCC, the overall outcome of the disease is still abysmal. With the advent of time, advanced diagnostic and treatment approaches have come into practice, but the burden of the disease has not improved significantly. Major reasons attributed to the poor outcome are delay in diagnosis, locoregional recurrence and resistance to the currently available treatment regimen. In this review, we have highlighted the existing challenges in the diagnosis and have emphasized the advancements in minimally invasive biomarkers. Additionally, the importance of collaborative multidimensional approaches involving clinicians and researchers has been discussed, as well as the need to redefine and establish better utility and management of existing diagnostic and treatment protocols along with the minimally invasive/non-invasive biomarkers.

15.
Radiol Med ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183242

RESUMEN

INTRODUCTION: While thermal ablation is now a standard treatment option for oligometastatic colorectal cancer patients, selecting those who will benefit most from locoregional therapies remains challenging. This proof-of-concept study is the first to assess the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent, analyzed by next-generation sequencing (NGS) and methylation specific digital droplet PCR (ddPCR). Our prospective study primary objective was to assess the prognostic value of ctDNA before thermal ablation. METHODS: This single-center prospective study from November 2021 to June 2022 included colorectal cancer patients referred for curative-intent thermal ablation. Cell-free DNA was tested at different time points by next-generation sequencing and detection of WIF1 and NPY genes hypermethylation using ddPCR. The ctDNA was considered positive if either a tumor mutation or hypermethylation was detected; recurrence-free survival was used as the primary endpoint. RESULTS: The study enrolled 15 patients, and a total of 60 samples were analyzed. The median follow-up after ablation was 316 days, and median recurrence-free survival was 250 days. CtDNA was positive for 33% of the samples collected during the first 24 h. The hazard ratio for progression according to the presence of baseline circulating tumor DNA was estimated at 0.14 (CI 95%: 0.03-0.65, p = 0.019). The dynamics are provided, and patients with no recurrence were all negative at H24 for ctDNA. DISCUSSION: This study shows the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent. We report that circulating tumor DNA is detectable in patients with low tumor burden using 2 techniques. This study emphasizes the potential of ctDNA for discerning patients who are likely to benefit from thermal ablation from those who may not, which could shape future referrals. The dynamics of ctDNA before and after ablation shed light on the need for further research and larger studies.

16.
Klin Onkol ; 38(1): 40-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183550

RESUMEN

BACKGROUND: To determine if circulating tumor DNA (ct-DNA) dynamics of epidermal growth factor receptor (EGFR) mutation in plasma can identify a subset of patients with EGFR-mutant (EGFR- m) non-small cell lung cancer (NSCLC) with inferior survival outcomes, we analyzed and compared survival outcomes among patients with and without baseline presence and early clearance of EGFR ct-DNA in plasma. MATERIAL AND METHODS: For 66 patients newly dia-gnosed with EGFR- m NSCLC, plasma samples were collected at baseline and 1st response assessment at 12-24 weeks for extraction of ct-DNA. Estimation of ct-DNA (EGFR exons 18, 19, 20 and 21) was done using droplet digital polymerase chain reaction (dd-PCR) on the QX200 ddPCR system (BioRad, USA). Patients with detectable EGFR ct-DNA at baseline (sample 1), with either undetectable or persistent detectable ct-DNA in sample 2 were classified as clearers and non-clearers, respectively. RESULTS: Fifty-three patients received 1st/ 2nd generation EGFR tyrosine kinase inhibitors (TKIs) and 13 received either 3rd generation TKI (osimertinib) or chemotherapy plus gefitinib. The baseline ct-DNA-positive group had more patients with extra thoracic disease (60.4 vs. 48.5%). For the entire cohort, there was no difference in median progression-free survival (PFS) among baseline ct-DNA-negative (13.57 months) vs. ct-DNA-positive patients (12.32 months) (HR 0.74). There was a significant improvement of PFS among early ct-DNA clearers vs. non-clearers (12.32 vs. 9.92 months; HR 0.57). For those treated with 1st/ 2nd generation EGFR TKIs, this improvement in median PFS among early ct-DNA clearers vs. non-clearers was more apparent (11.76 vs. 6.8 months; HR 0.34). CONCLUSIONS: Baseline detection of the presence of ct-DNA of EGFR mutation in plasma was not predictive of first-line PFS, but is associated with extra thoracic disease. Patients with EGFR mutation and persistence of ct-DNA at first follow-up have worse PFS and overall survival (OS) in comparison to those clearing the same in plasma, especially among those treated with 1st/ 2nd generation EGFR TKIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Femenino , Masculino , Persona de Mediana Edad , Anciano
17.
Ther Adv Med Oncol ; 16: 17588359241266164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175989

RESUMEN

Background: Current patient selection for adjuvant chemotherapy (ACT) after curative surgery for stage II colon cancer (CC) is suboptimal, causing overtreatment of high-risk patients and undertreatment of low-risk patients. Postoperative circulating tumor DNA (ctDNA) could improve patient selection for ACT. Objectives: We conducted an early model-based evaluation of the (cost-)effectiveness of ctDNA-guided selection for ACT in stage II CC in the Netherlands to assess the conditions for cost-effective implementation. Methods: A validated Markov model, simulating 1000 stage II CC patients from diagnosis to death, was supplemented with ctDNA data. Five ACT selection strategies were evaluated: the current guideline (pT4, pMMR), ctDNA-only, and three strategies that combined ctDNA status with pT4 and pMMR status in different ways. For each strategy, the costs, life years, quality-adjusted life years (QALYs), recurrences, and CC deaths were estimated. Sensitivity analyses were performed to assess the impact of the costs of ctDNA testing, strategy adherence, ctDNA as a predictive biomarker, and ctDNA test performance. Results: Model predictions showed that compared to current guidelines, the ctDNA-only strategy was less effective (+2.2% recurrences, -0.016 QALYs), while the combination strategies were more effective (-3.6% recurrences, +0.038 QALYs). The combination strategies were not cost-effective, since the incremental cost-effectiveness ratio was €67,413 per QALY, exceeding the willingness-to-pay threshold of €50,000 per QALY. Sensitivity analyses showed that the combination strategies would be cost-effective if the ctDNA test costs were lower than €1500, or if ctDNA status was predictive of treatment response, or if the ctDNA test performance improved substantially. Conclusion: Adding ctDNA to current high-risk clinicopathological features (pT4 and pMMR) can improve patient selection for ACT and can also potentially be cost-effective. Future studies should investigate the predictive value of post-surgery ctDNA status to accurately evaluate the cost-effectiveness of ctDNA testing for ACT decisions in stage II CC.


Effectiveness and cost-effectiveness of circulating tumour DNA-guided selection for adjuvant chemotherapy in patients with stage II colon cancer Most patients with stage II colon cancer (CC) are cured by surgery. Therefore, guidelines recommend to only offer adjuvant chemotherapy to patients who have a tumor with high-risk features. However, current selection is suboptimal, leading to recurrence of cancer in 13% of low-risk patients and unnecessary administration of chemotherapy in some high-risk patients. Previous studies indicate that a biomarker, so-called circulating tumour DNA (ctDNA), could improve the selection of high-risk patients for adjuvant chemotherapy, as patients who have detectable ctDNA in their blood after surgery are likely to develop a recurrence. Despite its potential, implementation is still pending. Our study assessed the long-term effectiveness and costs associated with various ctDNA-guided strategies for selecting high-risk patients for adjuvant chemotherapy in stage II CC. We used an health-economic model to simulate a cohort of 1000 Dutch patients with stage II CC from diagnosis to death. Next, we compared the health outcomes and costs of the ctDNA-guided strategies to those when selection is based on the Dutch guideline. We found that a combination of the Dutch guideline and ctDNA was the most effective strategy, but not cost-effective. Additional analyses showed that ctDNA-guided selection were cost-effective if the costs of the ctDNA test were below 1500 euros, if the ctDNA test performed significantly better, or if patients with detectable ctDNA responded better to chemotherapy. Thus, while post-surgery ctDNA status is a good indicator for recurrence risk, specific criteria related to ctDNA test performance and costs, in addition to combining ctDNA with current high-risk features, should be met to achieve cost-effective implementation. Looking ahead, future studies should explore how patients with detectable ctDNA respond to chemotherapy for next assessments of the cost-effectiveness of ctDNA-guided strategies in selecting patients with stage II CC for adjuvant chemotherapy.

18.
Leuk Lymphoma ; : 1-11, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126310

RESUMEN

Analytes within liquid biopsies have emerged as promising alternatives to traditional tissue biopsies for various malignancies, including lymphomas. This review explores the clinical applications of one such liquid biopsy analyte, circulating tumor DNA (ctDNA) in different types of lymphoma, focusing on its role in diagnosis, disease monitoring, and relapse detection. Advancements in next-generation sequencing (NGS) and machine learning have enhanced ctDNA analysis, offering a multi-omic approach to understanding tumor genetics. In lymphoma, ctDNA provides insights into tumor heterogeneity, aids in genetic profiling, and predicts treatment response. Recent studies demonstrate the prognostic value of ctDNA and its potential to improve patient outcomes by facilitating early disease detection and personalized treatment strategies Despite these advancements, challenges remain in optimizing sample collection, processing, assay sensitivity, and overall consensus workflows in order to facilitate integration into routine clinical practice.

19.
Int J Cancer ; 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128978

RESUMEN

Combined CDK4/6 inhibitor (CDK4/6i) and endocrine therapy significantly improves outcome for patients with estrogen receptor-positive (ER+) metastatic breast cancer, but drug resistance and thus disease progression inevitably occur. Herein, we aimed to identify genomic alterations associated with combined CDK4/6i and endocrine therapy resistance, and follow the levels of specific mutations in longitudinal circulating tumor DNA (ctDNA) for early detection of progression. From a cohort of 86 patients with ER+ metastatic breast cancer we performed whole exome sequencing or targeted sequencing of paired tumor (N = 8) or blood samples (N = 5) obtained before initiation of combined CDK4/6i and endocrine therapy and at disease progression. Mutations in oncogenic genes at progression were rare, while amplifications of growth-regulating genes were more frequent. The most frequently acquired alterations observed were PIK3CA and TP53 mutations and PDK1 amplification. Longitudinal ctDNA dynamics of mutant PIK3CA or private mutations revealed increased mutation levels at progression in 8 of 10 patients (80%). Impressively, rising levels of PIK3CA-mutated ctDNA were detected 4-17 months before imaging. Our data add to the growing evidence supporting longitudinal ctDNA analysis for real-time monitoring of CDK4/6i response and early detection of progression in advanced breast cancer. Further, our analysis suggests that amplification of growth-related genes may contribute to combined CDK4/6i and endocrine therapy resistance.

20.
Ann Transl Med ; 12(4): 64, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39118954

RESUMEN

Background: Circulating tumor DNA (ctDNA) analysis has been applied in cancer diagnostics including lung cancer. Specifically for the early detection purpose, various modalities of ctDNA analysis have demonstrated their potentials. Such analyses have showed diverse performance across different studies. Methods: We performed a systematic review of original studies published before 1 January 2023. Studies that evaluated ctDNA alone and in combination with other biomarkers for early detection of lung cancer were included. Results: The systematic review analysis included 56 original studies that were aimed for early detection of lung cancer. There were 39 studies for lung cancer only and 17 for pan-cancer early detection. Cancer and control cases included were heterogenous across studies. Different molecular features of ctDNA have been evaluated, including 7 studies on cell-free DNA concentration, 17 on mutation, 29 on methylation, 5 on hydroxymethylation and 8 on fragmentation patterns. Among these 56 studies, 17 have utilised different combinations of the above-mentioned ctDNA features and/or circulation protein markers. For all the modalities, lower sensitivities were reported for the detection of early-stage cancer. Conclusions: The systematic review suggested the clinical utility of ctDNA analysis for early detection of lung cancer, alone or in combination with other biomarkers. Future validation with standardised testing protocols would help integration into clinical care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA