Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
J Neural Eng ; 21(5)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39231475

RESUMEN

Objective.Cryogel microcarriers made of poly(ethylene glycol) diacrylate and 3-sulfopropyl acrylate have the potential to act as delivery vehicles for long-term retention of neurotrophic factors (NTFs) in the brain. In addition, they can potentially enhance stem cell-derived dopaminergic (DAergic) cell replacement strategies for Parkinson's disease (PD), by addressing the limitations of variable survival and poor differentiation of the transplanted precursors due to neurotrophic deprivation post-transplantation in the brain. In this context, to develop a proof-of-concept, the aim of this study was to determine the efficacy of glial cell line-derived NTF (GDNF)-loaded cryogel microcarriers by assessing their impact on the survival of, and reinnervation by, primary DAergic grafts after intra-striatal delivery in Parkinsonian rat brains.Approach.Rat embryonic day 14 ventral midbrain cells were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, or with GDNF, or with unloaded cryogel microcarriers, or with GDNF-loaded cryogel microcarriers.Post-mortem, GDNF and tyrosine hydroxylase immunostaining were used to identify retention of the delivered GDNF within the implanted cryogel microcarriers, and to identify the transplanted DAergic neuronal cell bodies and fibres in the brains, respectively.Main results.We found an intact presence of GDNF-stained cryogel microcarriers in graft sites, indicating their ability for long-term retention of the delivered GDNF up to 4 weeks in the brain. This resulted in an enhanced survival (1.9-fold) of, and striatal reinnervation (density & volume) by, the grafted DAergic neurons, in addition to an enhanced sprouting of fibres within graft sites.Significance.This data provides an important proof-of-principle for the beneficial effects of neurotrophin-loaded cryogel microcarriers on engraftment of cells in the context of cell replacement therapy in PD. For clinical translation, further studies will be needed to assess the impact of cryogel microcarriers on the survival and differentiation of stem cell-derived DAergic precursors in Parkinsonian rat brains.


Asunto(s)
Criogeles , Neuronas Dopaminérgicas , Factor Neurotrófico Derivado de la Línea Celular Glial , Animales , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratas , Criogeles/administración & dosificación , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/trasplante , Enfermedad de Parkinson/terapia , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Células Cultivadas , Masculino
2.
Carbohydr Polym ; 345: 122599, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227116

RESUMEN

Uncontrolled hemorrhage stands as the primary cause of potentially preventable deaths following traumatic injuries in both civilian and military populations. Addressing this critical medical need requires the development of a hemostatic material with rapid hemostatic performance and biosafety. This work describes the engineering of a chitosan-based cryogel construct using thermo-assisted cross-linking with α-ketoglutaric acid after freeze-drying. The resulting cryogel exhibited a highly interconnected macro-porous structure with low thermal conductivity, exceptional mechanical properties, and great fluid absorption capacity. Notably, assessments using rabbit whole blood in vitro, as well as rat liver volume defect and femoral artery injury models simulating severe bleeding, showed the remarkable hemostatic performance of the chitosan cryogel. Among the cryogel variants with different chitosan molecular weights, the 150 kDa one demonstrated superior hemostatic efficacy, reducing blood loss and hemostasis time by approximately 73 % and 63 % in the hepatic model, and by around 60 % and 68 %, in the femoral artery model. Additionally, comprehensive in vitro and in vivo evaluations underscored the good biocompatibility of the chitosan cryogel. Taken together, these results strongly indicate that the designed chitosan cryogel configuration holds significant potential as a safe and rapid hemostatic material for managing severe hemorrhage.


Asunto(s)
Quitosano , Criogeles , Hemorragia , Hemostáticos , Quitosano/química , Quitosano/farmacología , Criogeles/química , Animales , Conejos , Hemorragia/terapia , Hemorragia/tratamiento farmacológico , Hemostáticos/química , Hemostáticos/farmacología , Ratas , Masculino , Ratas Sprague-Dawley , Arteria Femoral/lesiones , Porosidad , Hígado/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Reactivos de Enlaces Cruzados/química , Hemostasis/efectos de los fármacos
3.
Biopolymers ; : e23623, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158278

RESUMEN

This work reports the assembly of mesoporous iron oxide nanoparticles (meso-MNPs) with cryogel scaffolds composed of chitosan and gelatin. Meso-MNPs with a particle size ranging from 2 and 50 nm, a surface area of 140.52 m2 g-1, and a pore volume of 0.27 cm3 g-1 were synthesized on a porous SiO2 template in the presence of PEG 6000 followed by leaching of SiO2. Different ratios of meso-MNPs were successfully incorporated into chitosan:gelatin cryogels up to an amount equivalent to the entire amount of polymer. The morphological structure and physicochemical properties of the cryogels were directly affected by the amount of MNPs. VSM curves showed that all composite cryogels could be magnetized by applying a magnetic field. In the context of the safety of magnetic cryogel scaffolds for use in biomedicine, it is important to note that all values are below the exposure limit for static magnetic fields, and according to cytotoxicity data, scaffolds containing meso-MNPs showed nontoxicity with cell viability ranging from 150% to 275%. In addition, microbial analysis with gram-negative and gram-positive bacteria showed that the scaffolds exhibited activity against these bacteria.

4.
Mikrochim Acta ; 191(8): 499, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088080

RESUMEN

The main goal of our study is to demonstrate the applicability of the PPy-cryogel-modified electrodes for electrochemical detection of DNA. First, a polysaccharide-based cryogel was synthesized. This cryogel was then used as a template for chemical polypyrrole synthesis. This prepared polysaccharide-based conductive cryogel was used for electrochemical biosensing on DNA. Carrageenan (CG) and sodium alginate (SA) polysaccharides, which stand out as biocompatible materials, were used in cryogel synthesis. Electron transfer was accelerated by polypyrrole (PPy) synthesized in cryogel networks. A 2B pencil graphite electrode with a diameter of 2.00 mm was used as a working electrode. The prepared polysaccharide solution was dropped onto a working electrode as a support material to improve the immobilization capacity of biomolecules and frozen to complete the cryogelation step. PPy synthesis was performed on the electrodes whose cryogelation process was completed. In addition, the structures of cryogels synthesized on the electrode surface were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Surface characterization of the modified electrodes was performed by energy-dispersive X-ray spectroscopy (EDX) analysis. Electrochemical determination of fish sperm DNA (fsDNA) was performed using a PPy-cryogel-modified electrode. The use of a porous 3D cryogel intermediate material enhanced the signal by providing a large surface area for the synthesis of PPy and increasing the biomolecule immobilization capacity. The detection limit was 0.98 µg mL-1 in the fsDNA concentration range 2.5-20 µg mL-1. The sensitivity of the DNA biosensor was estimated to 14.8 µA mM-1 cm-2. The stability of the biosensor under certain storage conditions was examined and observed to remain 66.95% up to 45 days.


Asunto(s)
Alginatos , Técnicas Biosensibles , Criogeles , ADN , Técnicas Electroquímicas , ADN/química , Técnicas Electroquímicas/métodos , Animales , Criogeles/química , Alginatos/química , Técnicas Biosensibles/métodos , Electrodos , Peces , Masculino , Carragenina/química , Polisacáridos/química , Polisacáridos/análisis , Pirroles/química , Espermatozoides/química , Límite de Detección , Polímeros
5.
Int J Biol Macromol ; 279(Pt 1): 135161, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214200

RESUMEN

Diclofenac (DCF) is frequently detected in aquatic environments, emphasizing the critical need for its efficient removal globally. Here, we present the synthesis of Fe(III)-doped ß-CD-grafted chitosan (Fe/ß-CD@CS) cryogel beads designed for adsorbing DCF in aqueous solutions. The beads exhibited an average size of 2.94 ± 0.66 mm and a point of zero charge of 8.03. Adsorption experiments demonstrated that the Langmuir kinetic model provided the most accurate description of the kinetic data, while the Redlich-Peterson isotherm offered the best fit for the equilibrium data. The beads showcased a theoretical maximum adsorption capacity of 712.3 mg/g for DCF, with the adsorption process being identified as exothermic. DCF adsorption on the beads was attributed to hydrogen bonding, metal cation-π interactions, and electrostatic interactions. Reusability tests exhibited that the beads could be regenerated using 0.1 M NaOH. To perform deep learning modeling, adsorption experiments (n = 17), designed utilizing central composite design (CCD), were conducted in duplicate. The CCD framework incorporated input variables such as initial DCF concentration, adsorbent dosage, and solution pH, while the output variable was the DCF removal rate. Utilizing the adsorption data, an artificial neural network (ANN) model was constructed with a topology of 3: 7:10:1, featuring 3 input variables, 7 neurons in the first hidden layer, 10 neurons in the second layer, and 1 output variable. Employing the ANN model data, 3-D response surface plots were generated to elucidate the relationship between input variables and DCF removal rate. Additional adsorption tests were conducted to evaluate the developed ANN model, affirming its reliable predictability for the DCF removal rate. Analysis of the relative importance of the input variables revealed the following order of importance: solution pH (100 %) > adsorbent dosage (75.2 %) > initial DCF concentration (57.7 %).

6.
Int J Biol Macromol ; 277(Pt 1): 134077, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053829

RESUMEN

Cryogel-templated oleogels (CTO) were fabricated via a facile polyphenol crosslinking strategy, where apple polyphenol was utilized to crosslink the gelatin/egg white protein conjugates without forming hydrogels. After freeze-drying, cryogel templates were obtained and used to construct CTO by oil absorption. Apple polyphenol crosslinking improved the emulsion-related properties with appearance changes on samples, and infrared spectroscopy further confirmed the interactions between proteins and apple polyphenol. The crosslinked cryogels presented porous microstructures (porosity of over 96 %), enhanced thermal/mechanical stabilities, and could absorb a high content of oil (14.41 g/g) with a considerable oil holding capacity (90.98 %). Apple polyphenol crosslinking also influenced the rheological performances of CTO, where the highly crosslinked samples owned the best thixotropic recovery of 85.88 %. Moreover, after the rapid oxidation of oleogels, the generation of oxidation products was effectively inhibited by crosslinking (POV: 0.48 nmol/g, and TBARS: 0.53 mg/L). The polyphenol crosslinking strategy successfully involved egg white protein and gelatin to fabricate CTO with desired physical/chemical properties. Apple polyphenol acted as both a crosslinker and an antioxidant, which provided a good reference for fabricating pure protein-based CTO.


Asunto(s)
Criogeles , Proteínas del Huevo , Gelatina , Malus , Compuestos Orgánicos , Oxidación-Reducción , Polifenoles , Polifenoles/química , Gelatina/química , Malus/química , Criogeles/química , Compuestos Orgánicos/química , Proteínas del Huevo/química , Reactivos de Enlaces Cruzados/química , Reología , Antioxidantes/química
7.
Int J Biol Macromol ; 276(Pt 2): 133931, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032896

RESUMEN

Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.


Asunto(s)
Criogeles , Textiles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Criogeles/química , Aguas Residuales/química , Biopolímeros/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Liofilización , Biodegradación Ambiental
8.
Adv Mater ; 36(36): e2311684, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39011812

RESUMEN

The escalating global demand for sustainable manufacturing, motivated by concerns over energy conservation and carbon footprints, encounters challenges due to insufficient renewable materials and arduous fabrication procedures to fulfill specific requirements in medical and healthcare systems. Here, biosafe pollen cryogel is engineered as effective hemostats without additional harmful crosslinkers to treat deep noncompressible wounds. A straightforward and low-energy approach is involved in forming stable macroporous cryogel, benefiting from the unique micro-hierarchical structures and chemical components of non-allergenic plant pollen. It is demonstrated that the pollen cryogel exhibits rapid water/blood-triggered shape-memory properties within 2 s. Owing to their inherent nano/micro hierarchical structure and abundant chemical functional groups on the pollen surface, the pollen cryogel shows effective hemostatic performance in a mouse liver penetration model, which is easily removed after usage. Overall, the self-crosslinking pollen cryogel in this work pioneers a framework of potential clinical applications for the first-hand treatment on deep noncompressible wounds.


Asunto(s)
Criogeles , Polen , Criogeles/química , Animales , Ratones , Polen/química , Hemorragia , Hemostáticos/química
9.
Gels ; 10(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39057506

RESUMEN

Cross-linking chitosan at room and subzero temperature using a series of diglycidyl ethers of glycols (DEs)-ethylene glycol (EGDE), 1,4-butanediol (BDDE), and poly(ethylene glycol) (PEGDE) has been investigated to demonstrate that DEs can be a more powerful alternative to glutaraldehyde (GA) for fabrication of biocompatible chitosan cryogels with tunable properties. Gelation of chitosan with DEs was significantly slower than with GA, allowing formation of cryogels with larger pores and higher permeability, more suitable for flow-through applications and cell culturing. Increased hydration of the cross-links with increased DE chain length weakened intermolecular hydrogen bonding in chitosan and improved cryogel elasticity. At high cross-linking ratios (DE:chitosan 1:4), the toughness and compressive strength of the cryogels decreased in the order EGDE > BDDE > PEGDE. By varying the DE chain length and concentration, permeable chitosan cryogels with elasticity moduli from 10.4 ± 0.8 to 41 ± 3 kPa, toughness from 2.68 ± 0.5 to 8.3 ± 0.1 kJ/m3, and compressive strength at 75% strain from 11 ± 2 to 33 ± 4 kPa were fabricated. Susceptibility of cryogels to enzymatic hydrolysis was identified as the parameter most sensitive to cross-linking conditions. Weight loss of cryogels increased with increased DE chain length, and degradation rate of PEGDE-cross-linked chitosan decreased 612-fold, when the cross-linker concentration increased 20-fold.

10.
Biomed Mater ; 19(5)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39025109

RESUMEN

Tissue engineering aims to improve or restore damaged tissues by using scaffolds, cells and bioactive agents. In tissue engineering, one of the most important concepts is the scaffold because it has a key role in keeping up and promoting the growth of the cells. It is also desirable to be able to load these scaffolds with drugs that induce tissue regeneration/formation. Based on this, in our study, gelatin cryogel scaffolds were developed for potential bone tissue engineering applications and simvastatin loading and release studies were performed. Simvastatin is lipoliphic in nature and this form is called inactive simvastatin (SV). It is modified to be in hydrophilic form and converted to the active form (SVA). For our study's drug loading and release process, simvastatin was used in both inactive and active forms. The blank cryogels and drug-loaded cryogels were prepared at different glutaraldehyde concentrations (1, 2, and 3%). The effect of the crosslinking agent and the amount of drug loaded were discussed with morphological and physicochemical analysis. As the glutaraldehyde concentration increased gradually, the pores size of the cryogels decreased and the swelling ratio decreased. For the release profile of simvastatin in both forms, we can say that it depended on the form (lipophilic and hydrophilic) of the loaded simvastatin.


Asunto(s)
Huesos , Criogeles , Gelatina , Simvastatina , Ingeniería de Tejidos , Andamios del Tejido , Simvastatina/química , Simvastatina/farmacología , Ingeniería de Tejidos/métodos , Gelatina/química , Criogeles/química , Andamios del Tejido/química , Porosidad , Ensayo de Materiales , Regeneración Ósea/efectos de los fármacos , Materiales Biocompatibles/química , Humanos , Reactivos de Enlaces Cruzados/química
11.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954479

RESUMEN

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Asunto(s)
Química Clic , Criogeles , Salmonella , Staphylococcus aureus , Criogeles/química , Staphylococcus aureus/aislamiento & purificación , Animales , Salmonella/aislamiento & purificación , Porosidad , Leche/microbiología , Leche/química , Ácidos Borónicos/química , Bovinos , Metacrilatos/química
12.
Biomed Mater ; 19(5)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39025110

RESUMEN

The entangled assembly of bacterial cellulose (BC) nanofibers does not provide a three-dimensional (3D) macroporous structure for cellular infiltration thus hindering its use as a scaffold for bone tissue engineering. In addition, it is difficult to achieve uniform dispersion of bioactive agents in entangled BC nanofibers. To address this, the BC nanofibers were integrated with MXene, a two-dimensional nanomaterial known for its electrical signaling and mechanical strength, along with sodium alginate to form cryogel. The cryogel was fabricated using a cross-linking to enhance its mechanical properties, pores for cellular infilteration. MXene incorporation not only increased water absorption (852%-1446%) and retention (692%-973%) ability but also significantly improved the compressive stress (0.85 MPa-1.43 MPa) and modulus (0.22 MPa-1.17 MPa) confirming successful MXene reinforcement in cryogel. Biological evaluation revealed that the optimum concentration of MXene increased the cell proliferation and the osteogenic role of fabricated scaffolds was also confirmed through osteogenic gene expressions. The macropores in reconstructed MXene-BC-based cryogel provided ample space for cellular proliferation. The osteogenic role of the scaffold was examined through various gene expressions. The Quantitative polymerase chain reaction revealed that MXene-loaded scaffolds especially in low concentration, had an obvious osteogenic effect hence concluding that BC can not only be reconstructed into the desired form but osteogenic property can be induced. These findings can open a new way of reconstructing BC into a more optimal structure to overcome its structural limitations and retain its natural bioactivities.


Asunto(s)
Alginatos , Huesos , Proliferación Celular , Celulosa , Fuerza Compresiva , Criogeles , Osteogénesis , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Alginatos/química , Criogeles/química , Celulosa/química , Andamios del Tejido/química , Porosidad , Nanofibras/química , Ensayo de Materiales , Reactivos de Enlaces Cruzados/química , Materiales Biocompatibles/química , Estrés Mecánico , Humanos , Animales
13.
Food Chem ; 457: 140153, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908240

RESUMEN

The objective of this study was to investigate the physicochemical, structural, and in vitro release properties of carboxymethyl cellulose (CMC)-based cryogel beads incorporating resveratrol-loaded microparticles (MP) for colon-targeted delivery system. CMC-based cryogel beads were produced by ionic cross-linking with different concentrations (2%, 3%, and 4%) of AlCl3. Based on FE-SEM images, CMC-based cryogel beads showed a smoother surface and more compact internal structure with increasing AlCl3 concentrations, which was proven to be due to the new cross-linking between the -COO- group of CMC and Al3+ by FT-IR analysis. The encapsulation efficiency of the cryogel beads was significantly increased from 79.48% to 85.74% by elevating the concentrations of AlCl3 from 2% to 4%, respectively. In vitro release study showed that all CMC-based cryogel beads had higher stability for resveratrol than MP in simulated gastric conditions and can efficiently deliver resveratrol to colon without the premature release.


Asunto(s)
Carboximetilcelulosa de Sodio , Colon , Criogeles , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Resveratrol , Resveratrol/química , Resveratrol/administración & dosificación , Carboximetilcelulosa de Sodio/química , Criogeles/química , Colon/metabolismo , Colon/química , Portadores de Fármacos/química , Humanos , Liberación de Fármacos , Tamaño de la Partícula , Microesferas
14.
Artículo en Inglés | MEDLINE | ID: mdl-38839726

RESUMEN

PURPOSE: In vivo studies are often required to prove the functionality and safety of medical devices. Clinical trials are costly and complex, adding to ethical scrutiny of animal testing. Anthropomorphic phantoms with versatile functionalities can overcome these issues with regard to medical education or an effective development of assistance systems during image-guided interventions (e.g., robotics, navigation/registration algorithms). In this work, an MRI-compatible and customizable motion phantom is presented to mimic respiratory-triggered organ movement as well as human anatomy. METHODS: For this purpose, polyvinyl alcohol cryogel (PVA-C) was the foundation for muscles, liver, kidneys, tumors, and remaining abdominal tissue in different sizes of the abdominal phantom body (APB) with the ability to mimic human tissue in various properties. In addition, a semi-flexible rib cage was 3D-printed. The motion unit (MU) with an electromagnetically shielded stepper motor and mechanical extensions simulated a respiration pattern to move the APB. RESULTS: Each compartment of the APB complied the relaxation times, dielectricity, and elasticity of human tissue. It showed resistance against mold and provided a resealable behavior after needle punctures. During long-term storage, the APB had a weight loss of 2.3%, followed by changes to relaxation times of 9.3% and elasticity up to 79%. The MU was able to physiologically appropriately mimic the organ displacement without reducing the MRI quality. CONCLUSION: This work presents a novel modularizable and low-cost PVA-C based APB to mimic fundamental organ motion. Beside a further organ motion analysis, an optimization of APB's chemical composition is needed to ensure a realistic motion simulation and reproducible long-term use. This phantom enhances diverse and varied training environments for prospective physicians as well as effective R&D of medical devices with the possibility to reduce in vivo experiments.

15.
Macromol Biosci ; : e2400038, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843388

RESUMEN

A cryogel is a supermacroporous gel network that is generated at subzero temperatures by polymerizing monomers or gelating polymeric precursors. Since cryogels possess inherent characteristics such as interconnected macroporous structures, excellent mechanical properties, and high resistance to autoclave sterilization, they are highly desirable for tissue engineering and regenerative medicine. Silk fibroin, a natural protein obtained from Bombyx mori silkworms, is an excellent raw material for cryogel preparation. The aim of this study is to establish a controlled method for preparing silk fibroin cryogels with suitable properties for application as tissue engineering scaffolds. Using a dual crosslinking strategy consisting of low-temperature radical polymerization coupled with methanol-induced conformational transformation, porous cryogels are prepared. The cryogels display many unique characteristics, such as an interconnected macroporous structure, a high water absorption capacity, water-triggered shape memory, syringe injectability, and strong resilience to autoclave sterilization. Furthermore, the cryogels demonstrate excellent biocompatibility and cell affinity, facilitating cell adhesion, migration, and proliferation. The interconnected supermacroporous architecture resembling the native extracellular matrix, together with their unique physical properties and autoclaving stability, suggests that cryogels are promising candidate scaffolds for tissue engineering and cell therapy.

16.
Biomed Mater ; 19(5)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38917835

RESUMEN

Mucilage is a natural source of polysaccharides that has recently attracted attention for use in biomaterial production. It attracts attention with its easy and fast extraction, biocompatibility, high water retention capacity, and biodegradability. Although there are studies on the characterization of mucilage obtained from different plant sources, the interaction of this polymer with other polymers and its potential to form new biomaterials have not yet been sufficiently investigated. Based on this, in this study, the potential of mucilage extracted from flaxseed for the production of cryogels for tissue engineering applications was demonstrated. Firstly, yield, basic physicochemical properties, morphology, and surface charge-dependent isoelectric point determination studies were carried out for the characterization of the extracted mucilage. The successful preparation of mucilage was evaluated for the construction of cryo-scaffolds and 3D, spongy, and porous structures were obtained in the presence of chitosan and polyvinyl alcohol polymers. A heterogeneous morphology with interconnected macro and micro porosity in the range of approximately 85-115 m pore diameter was exhibited. Due to the high hydrophilic structure of the mucilage, which is attached to the structure with weak hydrogen bonds, the contact angle values of the scaffolds were obtained below 80° and they showed the ability to absorb 1000 times their dry weight in approximately 30 min. As a preliminary optimization study for the evaluation of mucilage in cryogel formation, this work introduced a new construct to be developed as wound dressing scaffold for deep and chronic wounds.


Asunto(s)
Materiales Biocompatibles , Lino , Mucílago de Planta , Semillas , Ingeniería de Tejidos , Andamios del Tejido , Lino/química , Andamios del Tejido/química , Porosidad , Semillas/química , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Mucílago de Planta/química , Criogeles/química , Quitosano/química , Ensayo de Materiales , Polisacáridos/química , Alcohol Polivinílico/química , Polímeros/química
17.
Carbohydr Polym ; 340: 122217, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857997

RESUMEN

Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 µg/mL of I2. Although KI3 and the commercially available povidone­iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and âˆ¼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.


Asunto(s)
Antibacterianos , Antiinfecciosos Locales , Criogeles , Yodo , Solubilidad , Almidón , Agua , Yodo/química , Yodo/farmacología , Almidón/química , Almidón/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/química , Agua/química , Criogeles/química , Animales , Staphylococcus aureus/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Povidona Yodada/química , Povidona Yodada/farmacología , Escherichia coli/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
Bioelectrochemistry ; 158: 108725, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714062

RESUMEN

An enzymatic amperometric uric acid (UA) biosensor was successfully developed by modifying a screen-printed carbon electrode (SPCE) with Prussian blue-poly(3,4-ethylene dioxythiophene) polystyrene sulfonate composite (PB-PEDOT:PSS). The modified SPCE was coated with gold nanoparticles-graphene oxide-chitosan composite cryogel (AuNPs-GO-CS cry). Uricase (UOx) was directly immobilized via chemisorption on AuNPs. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. The electrochemical characterization of the modified electrode was performed by cyclic voltammetry and electrochemical impedance spectroscopy. UA was determined using amperometric detection based on the reduction current of PB which was correlated with the amount of H2O2 produced during the enzymatic reaction. Under optimal conditions, the fabricated UA biosensor in a flow injection analysis (FIA) system produced a linear range from 5.0 to 300 µmol L-1 with a detection limit of 1.88 µmol L-1. The proposed sensor was stable for up to 221 cycles of detection and analysis was rapid (2 min), with good reproducibility (RSDs < 2.90 %, n = 6), negligible interferences, and recoveries from 94.0 ± 3.9 to 101.1 ± 2.6 %. The results of UA detection in blood plasma were in agreement with the enzymatic colorimetric method (P > 0.05).


Asunto(s)
Técnicas Biosensibles , Criogeles , Electrodos , Oro , Grafito , Límite de Detección , Nanopartículas del Metal , Ácido Úrico , Técnicas Biosensibles/métodos , Ácido Úrico/sangre , Ácido Úrico/análisis , Oro/química , Grafito/química , Criogeles/química , Nanopartículas del Metal/química , Carbono/química , Polímeros/química , Porosidad , Análisis de Inyección de Flujo , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Quitosano/química , Poliestirenos/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Humanos , Urato Oxidasa/química , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Ferrocianuros/química
19.
Carbohydr Polym ; 338: 122212, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763714

RESUMEN

The upcycling of discarded garments can help to mitigate the environmental impact of the textile industry. Here, we fabricated hybrid anisotropic foams having cellulose nanocrystals (CNCs), which were isolated from discarded cotton textiles and had varied surface chemistries as structural components, in combination with xanthan gum (XG) as a physical crosslinker of the dispersion used for foam preparation. All CNCs had crystallinity indices above 85 %, zeta potential values below -40 mV at 1 mM NaCl, and true densities ranging from 1.61 to 1.67 g·cm-3. Quartz crystal microbalance with dissipation (QCM-D) measurements indicated weak interactions between CNC and XG, while rheology measurements showed that highly charged CNCs caused the XG chains to change from an extended to a helicoidal conformation, resulting in changes the in viscoelastic properties of the dispersions. The inclusion of XG significantly enhanced the compression mechanical properties of the freeze-casted foams without compromising their thermal properties, anisotropy, or degree of alignment. CNC-XG foams maintained structural integrity even after exposure to high humidity (91 %) and temperatures (100 °C) and displayed very low radial thermal conductivities. This research provides a viable avenue for upcycling cotton-based clothing waste into high-performance materials.

20.
Membranes (Basel) ; 14(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786942

RESUMEN

Agricultural and animal farming practices contribute significantly to greenhouse gas (GHG) emissions such as NH3, CH4, CO2, and NOx, causing local environmental concerns involving health risks and water/air pollution. A growing need to capture these pollutants is leading to the development of new strategies, including the use of solid adsorbents. However, commonly used adsorbent materials often pose toxicity and negative long-term environmental effects. This study aimed to develop responsive eco-friendly cryogels using xylan extracted from coffee parchment, a typical residue from coffee production. The crosslinking in cryogels was accomplished by "freeze-thawing" and subsequent freeze-drying. Cryogels were characterized in terms of morphology by using scanning electron microscopy, porosity, and density by the liquid saturation method and also moisture adsorption and ammonia adsorption capacity. The analysis showed that the porosity in the cryogels remained around 0.62-0.42, while the apparent densities varied from 0.14 g/cm3 to 0.25 g/cm3. The moisture adsorption capacity was the highest at the highest relative humidity level (80%), reaching 0.25-0.43 g of water per gram of sample; the amount of water adsorbed increased when the xylan content in the cryogel increased up to 10% w/v, which was consistent with the hygroscopic nature of xylan. The ammonia adsorption process was modeled accurately by a pseudo-second-order equation, where the maximum adsorption capacity in equilibrium reached 0.047 mg NH3/g when xylan reached 10% w/v in cryogels, indicating a chemisorption process. The cryogels under investigation hold promise for ammonia adsorption applications and GHG separation, offering a sustainable alternative for gas-capturing processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA