Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Am J Hum Genet ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39226899

RESUMEN

The BAF chromatin remodeler regulates lineage commitment including cranial neural crest cell (CNCC) specification. Variants in BAF subunits cause Coffin-Siris syndrome (CSS), a congenital disorder characterized by coarse craniofacial features and intellectual disability. Approximately 50% of individuals with CSS harbor variants in one of the mutually exclusive BAF subunits, ARID1A/ARID1B. While Arid1a deletion in mouse neural crest causes severe craniofacial phenotypes, little is known about the role of ARID1A in CNCC specification. Using CSS-patient-derived ARID1A+/- induced pluripotent stem cells to model CNCC specification, we discovered that ARID1A-haploinsufficiency impairs epithelial-to-mesenchymal transition (EMT), a process necessary for CNCC delamination and migration from the neural tube. Furthermore, wild-type ARID1A-BAF regulates enhancers associated with EMT genes. ARID1A-BAF binding at these enhancers is impaired in heterozygotes while binding at promoters is unaffected. At the sequence level, these EMT enhancers contain binding motifs for ZIC2, and ZIC2 binding at these sites is ARID1A-dependent. When excluded from EMT enhancers, ZIC2 relocates to neuronal enhancers, triggering aberrant neuronal gene activation. In mice, deletion of Zic2 impairs NCC delamination, while ZIC2 overexpression in chick embryos at post-migratory neural crest stages elicits ectopic delamination from the neural tube. These findings reveal an essential ARID1A-ZIC2 axis essential for EMT and CNCC delamination.

2.
J Invest Dermatol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39023472

RESUMEN

Aplasia cutis congenita (ACC) manifests at birth as a defect of the scalp skin. New findings answer 2 longstanding questions: why ACC forms and why it affects mainly the midline scalp skin. Dominant-negative mutations in the genes KCTD1 or KCTD15 cause ACC owing to loss of function of KCTD1/KCTD15 complexes in cranial neural crest cells (NCCs), which normally form midline cranial suture mesenchymal cells that express keratinocyte growth factors. Loss of KCTD1/KCTD15 function in NCCs impairs the formation of normal midline cranial sutures and, consequently, the overlying skin, resulting in ACC. Moreover, KCTD1/KCTD15 complexes in keratinocytes regulate skin appendage morphogenesis.

3.
Front Cell Dev Biol ; 12: 1420891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979034

RESUMEN

There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.

4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(4): 435-443, 2024 Aug 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049630

RESUMEN

OBJECTIVES: This study aimed to explore the heterogeneity and gene ontology of Wnt1-Cre-marked and Pax2-Cre-marked first branchial arch cranial neural crest cells (CNCs) in mice. METHODS: The embryos of Wnt1-Cre;R26RmTmG and Pax2-Cre;R26RmTmG at embryonic day (E)8.0-E9.25 were collected for histological observation. We performed immunostaining to compare green fluorescent protein (GFP)-positive CNCs in Pax2-Cre;R26RAi9 and Wnt1-Cre;R26RAi9 mice at E15.5. Single-cell RNA sequencing (scRNA-seq) was used to analyze the first branchial arch GFP-positive CNCs from Wnt1-Cre;R26RmTmG and Pax2-cre;R26RmTmGmice at E10.5. Real time fluorescence quantitative polymerase chain reaction (q-PCR) was performed to validate the differential genes. RESULTS: Wnt1-Cre-marked and Pax2-Cre-marked CNCs migrated from the neural plateto first and second branchial arches and to the first branchial arch, respectively, at E8.0. Although Wnt1-Cre-marked and Pax2-Cre-marked CNCs were found mostly in cranial-facial tissues, the former had higher expression in palate and tongue. The results of scRNA-seq showed that Pax2-Cre-marked CNCs specifically contributed to osteoblast differentiation and ossification, while Wnt1-Cre-marked CNCs participated in limb development, cell migration, and ossification. The q-PCR data also confirmed the results of gene ontology analysis. CONCLUSIONS: Pax2-Cre mice are perfect experimental animal models for research on first branchial arch CNCs and derivatives in osteoblast differentiation and ossification.


Asunto(s)
Región Branquial , Cresta Neural , Factor de Transcripción PAX2 , Proteína Wnt1 , Animales , Cresta Neural/metabolismo , Ratones , Proteína Wnt1/metabolismo , Factor de Transcripción PAX2/metabolismo , Integrasas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
5.
Ann N Y Acad Sci ; 1537(1): 113-128, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970771

RESUMEN

Goldenhar syndrome, a rare craniofacial malformation, is characterized by developmental anomalies in the first and second pharyngeal arches. Its etiology is considered to be heterogenous, including both genetic and environmental factors that remain largely unknown. To further elucidate the genetic cause in a five-generation Goldenhar syndrome pedigree and exploit the whole-exome sequencing (WES) data of this pedigree, we generated collapsed haplotype pattern markers based on WES and employed rare variant nonparametric linkage analysis. FBLN2 was identified as a candidate gene via analysis of WES data across the significant linkage region. A fbln2 knockout zebrafish line was established by CRISPR/Cas9 to examine the gene's role in craniofacial cartilage development. fbln2 was expressed specifically in the mandible during the zebrafish early development, while fbln2 knockout zebrafish exhibited craniofacial malformations with abnormal chondrocyte morphologies. Functional studies revealed that fbln2 knockout caused abnormal chondrogenic differentiation, apoptosis, and proliferation of cranial neural crest cells (CNCCs), and downregulated the bone morphogenic protein (BMP) signaling pathway in the zebrafish model. This study demonstrates the role of FBLN2 in CNCC development and BMP pathway regulation, and highlights FBLN2 as a candidate gene for Goldenhar syndrome, which may have implications for the selection of potential screening targets and the development of treatments for conditions like microtia-atresia.


Asunto(s)
Síndrome de Goldenhar , Cresta Neural , Linaje , Pez Cebra , Animales , Pez Cebra/embriología , Pez Cebra/genética , Cresta Neural/metabolismo , Síndrome de Goldenhar/genética , Síndrome de Goldenhar/metabolismo , Síndrome de Goldenhar/patología , Humanos , Femenino , Masculino , Diferenciación Celular/genética , Secuenciación del Exoma , Condrogénesis/genética , Transducción de Señal/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética
6.
Front Cell Dev Biol ; 12: 1376814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694818

RESUMEN

The pivotal role of FGF18 in the regulation of craniofacial and skeletal development has been well established. Previous studies have demonstrated that mice with deficiency in Fgf18 exhibit severe craniofacial dysplasia. Recent clinical reports have revealed that the duplication of chromosome 5q32-35.3, which encompasses the Fgf18 gene, can lead to cranial bone dysplasia and congenital craniosynostosis, implicating the consequence of possible overdosed FGF18 signaling. This study aimed to test the effects of augmented FGF18 signaling by specifically overexpressing the Fgf18 gene in cranial neural crest cells using the Wnt1-Cre;pMes-Fgf18 mouse model. The results showed that overexpression of Fgf18 leads to craniofacial abnormalities in mice similar to the Pierre Robin sequence in humans, including abnormal tongue morphology, micrognathia, and cleft palate. Further examination revealed that elevated levels of Fgf18 activated the Akt and Erk signaling pathways, leading to an increase in the proliferation level of tongue tendon cells and alterations in the contraction pattern of the genioglossus muscle. Additionally, we observed that excessive FGF18 signaling contributed to the reduction in the length of Meckel's cartilage and disrupted the development of condylar cartilage, ultimately resulting in mandibular defects. These anomalies involve changes in several downstream signals, including Runx2, p21, Akt, Erk, p38, Wnt, and Ihh. This study highlights the crucial role of maintaining the balance of endogenous FGF18 signaling for proper craniofacial development and offers insights into potential formation mechanisms of the Pierre Robin sequence.

7.
Congenit Anom (Kyoto) ; 64(2): 47-60, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38403785

RESUMEN

Cranial neural crest cells (NCCs) are critical for craniofacial development. The administration of valproic acid (VPA) to pregnant females causes craniofacial malformations in offspring. However, the in vivo influence of VPA on mammalian cranial NCCs remains unclear. In this study, we aimed to elucidate the developmental stage-specific effect of VPA on cranial NCCs through the administration of a single dose of VPA to pregnant rat females immediately prior to the formation of the cranial neural crest (NC). We performed whole-mount immunohistochemistry or in situ hybridization to examine localization changes of gene transcripts associated with the epithelial-mesenchymal transition of the cranial NC (i.e., cranial NCC formation) and cranial NCC migration. The results showed that Hoxa2 mRNA was abnormally detected and Sox9 mRNA expression was decreased in the midbrain-rhombomere (R) 1/2 NC, which forms cranial NCCs that migrate to the frontonasal mass (FNM) and branchial arch (BA) 1, through VPA administration, thus reducing the formation of SNAI2-positive NCCs. Hoxa2-positive NCCs were detected normally in BA2 and abnormally in FNM and BA1, which are normally Hox-free, implying VPA-induced abnormal cranial NCC migration. In vitro verification experiments using the whole embryo culture system revealed that midbrain-R4 NCC migration was abnormal. These results indicate that VPA reduces the formation/delamination of the midbrain-R1/2 NCCs in a developmental stage-specific manner and subsequently causes the abnormal migration of R4 NCCs, which suggests that the abnormal formation and migration of cranial NCCs contribute to the inhibition of axonal elongation in the trigeminal nerve and a reduction in head size.


Asunto(s)
Cresta Neural , Ácido Valproico , Animales , Ratas , Cresta Neural/metabolismo , Ácido Valproico/toxicidad , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Movimiento Celular , Mamíferos
8.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255806

RESUMEN

Microtia-atresia is a rare type of congenital craniofacial malformation causing severe damage to the appearance and hearing ability of affected individuals. The genetic factors associated with microtia-atresia have not yet been determined. The AMER1 gene has been identified as potentially pathogenic for microtia-atresia in two twin families. An amer1 mosaic knockdown zebrafish model was constructed using CRISPR/Cas9. The phenotype and the development process of cranial neural crest cells of the knockdown zebrafish were examined. Components of the Wnt/ß-catenin pathway were examined by qPCR, Western blotting, and immunofluorescence assay. IWR-1-endo, a reversible inhibitor of the Wnt/ß-catenin pathway, was applied to rescue the abnormal phenotype. The present study showed that the development of mandibular cartilage in zebrafish was severely compromised by amer1 knockdown using CRISPR/Cas9. Specifically, amer1 knockdown was found to affect the proliferation and apoptosis of cranial neural crest cells, as well as their differentiation to chondrocytes. Mechanistically, amer1 exerted an antagonistic effect on the Wnt/ß-catenin pathway. The application of IWR-1-endo could partially rescue the abnormal phenotype. We demonstrated that amer1 was essential for the craniofacial development of zebrafish by interacting with the Wnt/ß-catenin pathway. These findings provide important insight into the role of amer1 in zebrafish mandibular development and the pathology of microtia-atresia caused by AMER1 gene mutations in humans.


Asunto(s)
Microtia Congénita , Imidas , Quinolinas , Pez Cebra , Animales , Apoptosis/genética , beta Catenina/genética , Pez Cebra/genética
9.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37812056

RESUMEN

The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.


Asunto(s)
Evolución Biológica , Cráneo , Animales , Humanos , Vertebrados , Cresta Neural/metabolismo , Biología Evolutiva , Regulación del Desarrollo de la Expresión Génica
10.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895082

RESUMEN

Bone growth plate abnormalities and skull shape defects are seen in hypophosphatasia, a heritable disorder in humans that occurs due to the deficiency of tissue nonspecific alkaline phosphatase (TNAP, Alpl) enzyme activity. The abnormal development of the cranial base growth plates (synchondroses) and abnormal skull shapes have also been demonstrated in global Alpl-/- mice. To distinguish local vs. systemic effects of TNAP on skull development, we utilized P0-Cre to knockout Alpl only in cranial neural crest-derived tissues using Alpl flox mice. Here, we show that Alpl deficiency using P0-Cre in cranial neural crest leads to skull shape defects and the deficient growth of the intersphenoid synchondrosis (ISS). ISS chondrocyte abnormalities included increased proliferation in resting and proliferative zones with decreased apoptosis in hypertrophic zones. ColX expression was increased, which is indicative of premature differentiation in the absence of Alpl. Sox9 expression was increased in both the resting and prehypertrophic zones of mutant mice. The expression of Parathyroid hormone related protein (PTHrP) and Indian hedgehog homolog (IHH) were also increased. Finally, cranial base organ culture revealed that inorganic phosphate (Pi) and pyrophosphate (PPi) have specific effects on cell signaling and phenotype changes in the ISS. Together, these results demonstrate that the TNAP expression downstream of Alpl in growth plate chondrocytes is essential for normal development, and that the mechanism likely involves Sox9, PTHrP, IHH and PPi.


Asunto(s)
Fosfatasa Alcalina , Condrocitos , Animales , Ratones , Fosfatasa Alcalina/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Cresta Neural/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Base del Cráneo/metabolismo
11.
J Proteome Res ; 22(10): 3264-3274, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616547

RESUMEN

The epithelial-to-mesenchymal transition (EMT) and migration of cranial neural crest cells within the midbrain are critical processes that permit proper craniofacial patterning in the early embryo. Disruptions in these processes not only impair development but also lead to various diseases, underscoring the need for their detailed understanding at the molecular level. The chick embryo has served historically as an excellent model for human embryonic development, including cranial neural crest cell EMT and migration. While these developmental events have been characterized transcriptionally, studies at the protein level have not been undertaken to date. Here, we applied mass spectrometry (MS)-based proteomics to establish a deep proteomics profile of the chick midbrain region during early embryonic development. Our proteomics method combines optimal lysis conditions, offline fractionation, separation on a nanopatterned stationary phase (µPAC) using nanoflow liquid chromatography, and detection using quadrupole-ion trap-Orbitrap tribrid high-resolution tandem MS. Identification of >5900 proteins and >450 phosphoproteins in this study marks the deepest coverage of the chick midbrain proteome to date. These proteins have known roles in pathways related to neural crest cell EMT and migration such as signaling, proteolysis/extracellular matrix remodeling, and transcriptional regulation. This study offers valuable insight into important developmental processes occurring in the midbrain region and demonstrates the utility of proteomics for characterization of tissue microenvironments during chick embryogenesis.

12.
Birth Defects Res ; 115(15): 1411-1423, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602693

RESUMEN

BACKGROUND: To explore the pathogenesis of microtia, in this study, the different concentrations of mycophenolate mofetil (MMF) exposure on the development of rat embryonic and fetal ears, in order to establish a drug-induced microtia model, and provide a basis for further exploring the pathogenesis of microtia. METHODS: The pregnant rat model was established in this study, 56 pregnant SD rats were randomly divided into 4 groups: control group and MMF (50, 100, and 200 mg/kg) group. Solutions were administered to the rats by oral gavage at gestation day (GD) 9 and GD 10 8:00 a.m, once a day. On GD 10.5 and GD 14.5, embryos were evaluated for neural crest development. On GD 20.5, fetuses were evaluated for overall survival and development with particular focus on ear development via morphologic, skeletal, and histologic investigation. Some animals were allowed to deliver their litters and offspring were evaluated on postnatal day 18 for ear development. RESULTS: A total of 56 pregnant rats, 14 in each group, were included in the study. As a result, depending on MMF dose increase, in experimental groups, it was determined that the statistically significant the development of the first and second branchial arches and derived tissues of the embryo, overall survival, ear development, and length and weight of fetuses. Imaging of MMF groups revealed statistically significant differences in the development of the skull and auditory vesicles of MMF treated fetuses. Histologically, MMF affected the proliferation and differentiation of chondrocytes and the expression of type II collagen. CONCLUSIONS: Mycophenolate mofetil can lead to the hypoplasia of rat embryos, fetuses, and auricle in a dose-dependent. MMF may affect the migration and proliferation of cranial neural crest cells, and then lead to microtia. MMF may induce the establishment of an animal model of microtia.


Asunto(s)
Microtia Congénita , Ácido Micofenólico , Femenino , Embarazo , Humanos , Animales , Ratas , Ratas Sprague-Dawley , Ácido Micofenólico/efectos adversos , Feto , Atención Prenatal
13.
Toxicol Sci ; 196(1): 38-51, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37531284

RESUMEN

Craniofacial anomalies are one of the most frequent birth defects worldwide and are often caused by genetic and environmental factors such as pharmaceuticals and chemical agents. Although identifying adverse outcome pathways (AOPs) is a central issue for evaluating the teratogenicity, the AOP causing craniofacial anomalies has not been identified. Recently, zebrafish has gained interest as an emerging model for predicting teratogenicity because of high throughput, cost-effectiveness and availability of various tools for examining teratogenic mechanisms. Here, we established zebrafish sox10-EGFP reporter lines to visualize cranial neural crest cells (CNCCs) and have identified the AOPs for craniofacial anomalies. When we exposed the transgenic embryos to teratogens that were reported to cause craniofacial anomalies in mammals, CNCC migration and subsequent morphogenesis of the first pharyngeal arch were impaired at 24 hours post-fertilization. We also found that cell proliferation and apoptosis of the migratory CNCCs were disturbed, which would be key events of the AOP. From these results, we propose that our sox10-EGFP reporter lines serve as a valuable model for detecting craniofacial skeletal abnormalities, from early to late developmental stages. Given that the developmental process of CNCCs around this stage is highly conserved between zebrafish and mammals, our findings can be extrapolated to mammalian craniofacial development and thus help in predicting craniofacial anomalies in human.


Asunto(s)
Rutas de Resultados Adversos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Cráneo , Regulación del Desarrollo de la Expresión Génica , Teratógenos/farmacología , Mamíferos
14.
J Dev Biol ; 11(3)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37489330

RESUMEN

Neural crest (NC) is a unique vertebrate cell type arising from the border of the neural plate and epidermis that gives rise to diverse tissues along the entire body axis. Roberto Mayor and colleagues have made major contributions to our understanding of NC induction, delamination, and migration. We report that a truncating mutation of the classical tumor suppressor Adenomatous Polyposis Coli (apc) disrupts craniofacial development in zebrafish larvae, with a marked reduction in the cranial neural crest (CNC) cells that contribute to mandibular and hyoid pharyngeal arches. While the mechanism is not yet clear, the altered expression of signaling molecules that guide CNC migration could underlie this phenotype. For example, apcmcr/mcr larvae express substantially higher levels of complement c3, which Mayor and colleagues showed impairs CNC cell migration when overexpressed. However, we also observe reduction in stroma-derived factor 1 (sdf1/cxcl12), which is required for CNC migration into the head. Consistent with our previous work showing that APC directly enhances the activity of glycogen synthase kinase 3 (GSK-3) and, independently, that GSK-3 phosphorylates multiple core mRNA splicing factors, we identify 340 mRNA splicing variations in apc mutant zebrafish, including a splice variant that deletes a conserved domain in semaphorin 3f (sema3f), an axonal guidance molecule and a known regulator of CNC migration. Here, we discuss potential roles for apc in CNC development in the context of some of the seminal findings of Mayor and colleagues.

15.
Anat Rec (Hoboken) ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37497849

RESUMEN

Most bone develops either by intramembranous ossification where bone forms within a soft connective tissue, or by endochondral ossification by way of a cartilage anlagen or model. Bones of the skull can form endochondrally or intramembranously or represent a combination of the two types of ossification. Contrary to the classical definition of intramembranous ossification, we have previously described a tight temporo-spatial relationship between cranial cartilages and dermal bone formation and proposed a mechanistic relationship between chondrocranial cartilage and dermal bone. Here, we further investigate this relationship through an analysis of how cells organize to form cranial cartilages and dermal bone. Using Wnt1-Cre2 and Mesp1-Cre transgenic mice, we determine the derivation of cells that comprise cranial cartilages from either cranial neural crest (CNC) or paraxial mesoderm (PM). We confirm a previously determined CNC-PM boundary that runs through the hypophyseal fenestra in the cartilaginous braincase floor and identify four additional CNC-PM boundaries in the chondrocranial lateral wall, including a boundary that runs along the basal and apical ends of the hypochiasmatic cartilage. Based on the knowledge that as osteoblasts differentiate from CNC- and PM-derived mesenchyme, the differentiating cells express the transcription factor genes RUNX2 and osterix (OSX), we created a new transgenic mouse line called R2Tom. R2Tom mice carry a tdTomato reporter gene joined with an evolutionarily well-conserved enhancer sequence of RUNX2. R2Tom mice crossed with Osx-GFP mice yield R2Tom;Osx-GFP double transgenic mice in which various stages of osteoblasts and their precursors are detected with different fluorescent reporters. We use the R2Tom;Osx-GFP mice, new data on the cell derivation of cranial cartilages, histology, immunohistochemistry, and detailed morphological observations combined with data from other investigators to summarize the differentiation of cranial mesenchyme as it forms condensations that become chondrocranial cartilages and associated dermal bones of the lateral cranial wall. These data advance our previous findings of a tendency of cranial cartilage and dermal bone development to vary jointly in a coordinated manner, promoting a role for cranial cartilages in intramembranous bone formation.

16.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220083, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37183904

RESUMEN

The placental skull has evolved into myriad forms, from longirostrine whales to globular primates, and with a diverse array of appendages from antlers to tusks. This disparity has recently been studied from the perspective of the whole skull, but the skull is composed of numerous elements that have distinct developmental origins and varied functions. Here, we assess the evolution of the skull's major skeletal elements, decomposed into 17 individual regions. Using a high-dimensional morphometric approach for a dataset of 322 living and extinct eutherians (placental mammals and their stem relatives), we quantify patterns of variation and estimate phylogenetic, allometric and ecological signal across the skull. We further compare rates of evolution across ecological categories and ordinal-level clades and reconstruct rates of evolution along lineages and through time to assess whether developmental origin or function discriminate the evolutionary trajectories of individual cranial elements. Our results demonstrate distinct macroevolutionary patterns across cranial elements that reflect the ecological adaptations of major clades. Elements derived from neural crest show the fastest rates of evolution, but ecological signal is equally pronounced in bones derived from neural crest and paraxial mesoderm, suggesting that developmental origin may influence evolutionary tempo, but not capacity for specialisation. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Asunto(s)
Evolución Biológica , Placenta , Embarazo , Animales , Femenino , Filogenia , Cráneo , Cabeza , Mamíferos/genética , Primates , Cetáceos
17.
Genes (Basel) ; 14(4)2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37107596

RESUMEN

Hemifacial microsomia (HFM), a rare disorder of first- and second-pharyngeal arch development, has been linked to a point mutation in VWA1 (von Willebrand factor A domain containing 1), encoding the protein WARP in a five-generation pedigree. However, how the VWA1 mutation relates to the pathogenesis of HFM is largely unknown. Here, we sought to elucidate the effects of the VWA1 mutation at the molecular level by generating a vwa1-knockout zebrafish line using CRISPR/Cas9. Mutants and crispants showed cartilage dysmorphologies, including hypoplastic Meckel's cartilage and palatoquadrate cartilage, malformed ceratohyal with widened angle, and deformed or absent ceratobranchial cartilages. Chondrocytes exhibited a smaller size and aspect ratio and were aligned irregularly. In situ hybridization and RT-qPCR showed a decrease in barx1 and col2a1a expression, indicating abnormal cranial neural crest cell (CNCC) condensation and differentiation. CNCC proliferation and survival were also impaired in the mutants. Expression of FGF pathway components, including fgf8a, fgfr1, fgfr2, fgfr3, fgfr4, and runx2a, was decreased, implying a role for VWA1 in regulating FGF signaling. Our results demonstrate that VWA1 is essential for zebrafish chondrogenesis through effects on condensation, differentiation, proliferation, and apoptosis of CNCCs, and likely impacts chondrogenesis through regulation of the FGF pathway.


Asunto(s)
Condrogénesis , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Condrogénesis/genética , Cartílago/metabolismo , Condrocitos/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/metabolismo
18.
Am J Hum Genet ; 110(5): 846-862, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37086723

RESUMEN

Craniosynostosis (CS) is the most common congenital cranial anomaly. Several Mendelian forms of syndromic CS are well described, but a genetic etiology remains elusive in a substantial fraction of probands. Analysis of exome sequence data from 526 proband-parent trios with syndromic CS identified a marked excess (observed 98, expected 33, p = 4.83 × 10-20) of damaging de novo variants (DNVs) in genes highly intolerant to loss-of-function variation (probability of LoF intolerance > 0.9). 30 probands harbored damaging DNVs in 21 genes that were not previously implicated in CS but are involved in chromatin modification and remodeling (4.7-fold enrichment, p = 1.1 × 10-11). 17 genes had multiple damaging DNVs, and 13 genes (CDK13, NFIX, ADNP, KMT5B, SON, ARID1B, CASK, CHD7, MED13L, PSMD12, POLR2A, CHD3, and SETBP1) surpassed thresholds for genome-wide significance. A recurrent gain-of-function DNV in the retinoic acid receptor alpha (RARA; c.865G>A [p.Gly289Arg]) was identified in two probands with similar CS phenotypes. CS risk genes overlap with those identified for autism and other neurodevelopmental disorders, are highly expressed in cranial neural crest cells, and converge in networks that regulate chromatin modification, gene transcription, and osteoblast differentiation. Our results identify several CS loci and have major implications for genetic testing and counseling.


Asunto(s)
Craneosinostosis , Tretinoina , Humanos , Mutación , Craneosinostosis/genética , Regulación de la Expresión Génica , Cromatina , Predisposición Genética a la Enfermedad
19.
Front Cell Dev Biol ; 11: 1074616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875772

RESUMEN

The biological basis of lateralized cranial aberrations can be rooted in early asymmetric patterning of developmental tissues. However, precisely how development impacts natural cranial asymmetries remains incompletely understood. Here, we examined embryonic patterning of the cranial neural crest at two phases of embryonic development in a natural animal system with two morphotypes: cave-dwelling and surface-dwelling fish. Surface fish are highly symmetric with respect to cranial form at adulthood, however adult cavefish harbor diverse cranial asymmetries. To examine if lateralized aberrations of the developing neural crest underpin these asymmetries, we used an automated technique to quantify the area and expression level of cranial neural crest markers on the left and right sides of the embryonic head. We examined the expression of marker genes encoding both structural proteins and transcription factors at two key stages of development: 36 hpf (∼mid-migration of the neural crest) and 72 hpf (∼early differentiation of neural crest derivatives). Interestingly, our results revealed asymmetric biases at both phases of development in both morphotypes, however consistent lateral biases were less common in surface fish as development progressed. Additionally, this work provides the information on neural crest development, based on whole-mount expression patterns of 19 genes, between stage-matched cave and surface morphs. Further, this study revealed 'asymmetric' noise as a likely normative component of early neural crest development in natural Astyanax fish. Mature cranial asymmetries in cave morphs may arise from persistence of asymmetric processes during development, or as a function of asymmetric processes occurring later in the life history.

20.
Front Genet ; 14: 1082911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845386

RESUMEN

Craniofacial development requires intricate cooperation between multiple transcription factors and signaling pathways. Six1 is a critical transcription factor regulating craniofacial development. However, the exact function of Six1 during craniofacial development remains elusive. In this study, we investigated the role of Six1 in mandible development using a Six1 knockout mouse model (Six1 -/- ) and a cranial neural crest-specific, Six1 conditional knockout mouse model (Six1 f/f ; Wnt1-Cre). The Six1 -/- mice exhibited multiple craniofacial deformities, including severe microsomia, high-arched palate, and uvula deformity. Notably, the Six1 f/f ; Wnt1-Cre mice recapitulate the microsomia phenotype of Six1 -/- mice, thus demonstrating that the expression of Six1 in ectomesenchyme is critical for mandible development. We further showed that the knockout of Six1 led to abnormal expression of osteogenic genes within the mandible. Moreover, the knockdown of Six1 in C3H10 T1/2 cells reduced their osteogenic capacity in vitro. Using RNA-seq, we showed that both the loss of Six1 in the E18.5 mandible and Six1 knockdown in C3H10 T1/2 led to the dysregulation of genes involved in embryonic skeletal development. In particular, we showed that Six1 binds to the promoter of Bmp4, Fat4, Fgf18, and Fgfr2, and promotes their transcription. Collectively, our results suggest that Six1 plays a critical role in regulating mandibular skeleton formation during mouse embryogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA