RESUMEN
Resumen La aparición de convulsiones es frecuente durante el periodo neonatal debido a las características de inma durez funcional del cerebro es este periodo. La aparición de estas convulsiones puede llevar a un diagnóstico de epilepsia neonatal, que suele estar asociado a alteracio nes estructurales del cerebro durante el neurodesarrollo. Aproximadamente el 50% de las personas con epilepsia activa padecen al menos un trastorno médico comórbi do, y esto hace que cambie la evolución de la epilepsia. La presencia de trastornos neurológicos que preceden a la aparición de la epilepsia indica que alteraciones es tructurales y/o funcionales del cerebro subyacentes pue den ser causa de la predisposición a padecer epilepsia y de los procesos comórbidos de manera independiente. En esta revisión describimos los procesos cerebrales estructurales y funcionales que subyacen a la aparición de epilepsia neonatal y sus comorbilidades.
Abstract The occurrence of seizures is frequent during the neonatal period due to the functional immaturity of the brain.The presence of these seizures may lead to a diagnosis of neonatal epilepsy, which is usually as sociated with structural alterations of the brain during neurodevelopment. Approximately 50% of people with active epilepsy have at least one comorbid medical di sorder, and the existence of a comorbid process changes the course of the epilepsy. The presence of neurologic disorders preceding the onset of epilepsy indicates that underlying neurobiological alterations may indepen dently cause the predisposition to epilepsy and comor bid processes. In this review we describe the structural and functional brain processes underlying the onset of neonatal epilepsy and its comorbidities.
RESUMEN
The presence of dysmorphic neurons with strong cytoplasmatic accumulation of heavy non-phosphorylated neurofilament is crucial for the diagnostics of focal cortical dysplasia type II (FCDII). While ILAE's classification describes neocortical dysplasias, some groups have reported patients with mesial t abnormal neurons in the hippocampus of mesial temporal lobe epilepsy. Here we report a patient with such abnormal neurons in the hippocampus and compared it with previous reports of hippocampal dysplasia. Finally, we discuss the need for diagnostic criteria of hippocampal dysplasia.
Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Adulto , Humanos , Epilepsia , Epilepsia del Lóbulo Temporal/diagnóstico , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/patología , Malformaciones del Desarrollo Cortical de Grupo I/diagnóstico , Malformaciones del Desarrollo Cortical de Grupo I/patologíaRESUMEN
The occurrence of seizures is frequent during the neonatal period due to the functional immaturity of the brain.The presence of these seizures may lead to a diagnosis of neonatal epilepsy, which is usually associated with structural alterations of the brain during neurodevelopment. Approximately 50% of people with active epilepsy have at least one comorbid medical disorder, and the existence of a comorbid process changes the course of the epilepsy. The presence of neurologic disorders preceding the onset of epilepsy indicates that underlying neurobiological alterations may independently cause the predisposition to epilepsy and comorbid processes. In this review we describe the structural and functional brain processes underlying the onset of neonatal epilepsy and its comorbidities.
La aparición de convulsiones es frecuente durante el periodo neonatal debido a las características de inmadurez funcional del cerebro es este periodo. La aparición de estas convulsiones puede llevar a un diagnóstico de epilepsia neonatal, que suele estar asociado a alteraciones estructurales del cerebro durante el neurodesarrollo. Aproximadamente el 50% de las personas con epilepsia activa padecen al menos un trastorno médico comórbido, y esto hace que cambie la evolución de la epilepsia. La presencia de trastornos neurológicos que preceden a la aparición de la epilepsia indica que alteraciones estructurales y/o funcionales del cerebro subyacentes pueden ser causa de la predisposición a padecer epilepsia y de los procesos comórbidos de manera independiente. En esta revisión describimos los procesos cerebrales estructurales y funcionales que subyacen a la aparición de epilepsia neonatal y sus comorbilidades.
Asunto(s)
Epilepsia , Recién Nacido , Humanos , Epilepsia/diagnóstico , Convulsiones/etiología , Encéfalo , ComorbilidadRESUMEN
Focal atonic seizures are recognized rarely as ictal phenomena, they can correspond to both generalized epilepsy and focal epilepsy. The areas of the brain involved in the management of this type of seizure are: the negative motor area and the primary motor and primary somatosensory cortices, although the neurophysiology that generates them is still unclear. We present the case of a patient with focal atonic seizures in the left upper limb, refractory to drug treatment. Neuroimaging was performed, a parietal cortical lesion was diagnosed. A scalp Video EEG and then a Stereo EEG was performed, defining the epileptogenic area and its relationship with eloquent areas. Surgical resection of the lesion was performed, achieving complete seizure control.
Las crisis atónicas focales son poco reconocidas como fenómenos ictales, pueden corresponder tanto a una epilepsia generalizada como a una epilepsia focal. Las áreas del cerebro implicadas en la gestión de este tipo de crisis son: el área motora negativa y las cortezas motora primaria y somatosensitiva primaria, aunque aún la neurofisiología que las genera no está aclarada. Presentamos el caso de un paciente con crisis atónicas focales farmacorresistentes en miembro superior izquierdo. Se realizó resonancia de cerebro con diagnóstico de displasia cortical parietal, se monitoreó con video EEG de scalp y luego a video EEG con electrodos profundos. Se definieron el área epileptógena y su relación con áreas elocuentes, se realizó resección quirúrgica de la lesión, logrando el control completo de las crisis.
Asunto(s)
Epilepsias Parciales , Epilepsia Generalizada , Malformaciones del Desarrollo Cortical , Humanos , Epilepsias Parciales/etiología , Epilepsias Parciales/cirugía , Epilepsias Parciales/diagnóstico , Convulsiones/etiología , Convulsiones/cirugía , Encéfalo , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/cirugía , Electroencefalografía , Imagen por Resonancia MagnéticaRESUMEN
Resumen Las crisis atónicas focales son poco reconocidas como fenómenos ictales, pueden corresponder tanto a una epilepsia generalizada como a una epilepsia focal. Las áreas del cerebro implicadas en la gestión de este tipo de crisis son: el área motora negativa y las cortezas motora primaria y somatosensitiva primaria, aunque aún la neurofisiología que las genera no está aclarada. Presentamos el caso de un paciente con crisis atónicas focales farmacorresistentes en miembro superior iz quierdo. Se realizó resonancia de cerebro con diagnóstico de displasia cortical parietal, se monitoreó con video EEG de scalp y luego a video EEG con electrodos profundos. Se definieron el área epileptógena y su relación con áreas elocuentes, se realizó resección quirúrgica de la lesión, logrando el control completo de las crisis.
Abstract Focal atonic seizures are recognized rarely as ictal phenomena, they can correspond to both generalized epilepsy and focal epilepsy. The areas of the brain in volved in the management of this type of seizure are: the negative motor area and the primary motor and primary somatosensory cortices, although the neurophysiology that generates them is still unclear. We present the case of a patient with focal atonic seizures in the left upper limb, refractory to drug treatment. Neuroimaging was performed, a parietal cortical lesion was diagnosed. A scalp Video EEG and then a Stereo EEG was performed, defining the epileptogenic area and its relationship with eloquent areas. Surgical resection of the lesion was performed, achieving complete seizure control.
RESUMEN
BACKGROUND: Focal cortical dysplasia (FCD) is a malformation of cortical development that causes medical refractory seizures, and one of the main treatments may be surgical resection of the affected area of the brain. People affected by FCD may present with seizures of variable severity since childhood. Despite many medical treatments available, only surgery can offer cure. The pathophysiology of the disease is not yet understood; however, it is known that several gene alterations may play a role. The WNT/ß-catenin pathway is closely related to the control and balance of cell proliferation and differentiation in the central nervous system. The aim of this study was to explore genes related to the WNT/ß-catenin pathway in lesional and perilesional brain tissue in patients with FCD type II. METHODS: Dysplastic and perilesional tissue from the primary dysplastic lesion of patients with FCD type IIa were obtained from two patients who underwent surgical treatment. The analysis of the relative expression of genes was performed by a qRT-PCR array (super array) containing 84 genes related to the WNT pathway. RESULTS: Our results suggest the existence of molecular alteration in some genes of the WNT pathway in tissue with dysplastic lesions and of perilesional tissue. We call this tissue of normal-appearing adjacent cortex (NAAC). Of all genes analyzed, a large number of genes show similar behavior between injured, perilesional and control tissues. However, some genes have similar characteristics between the perilesional and lesional tissue and are different from the control brain tissue, presenting the perilesional tissue as a molecularly altered material. CONCLUSION: Our results suggest that the perilesional area after surgical resection of tissue with cortical dysplasia presents molecular changes that may play a role in the recurrence of seizures in these patients. The perilesional tissue should receive expanded attention beyond the somatic mutations described and associated with FCD, such as mTOR, for example, to new signaling pathways that may play a crucial role in seizure recurrence.
Asunto(s)
Epilepsia Refractaria , Displasia Cortical Focal , Humanos , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Vía de Señalización Wnt/genética , beta Catenina , ConvulsionesRESUMEN
The present article describes pathophysiological and clinical aspects of congenital malformations of the cerebral tissue (cortex and white matter) that cause epilepsy and very frequently require surgical treatment. A particular emphasis is given to focal cortical dysplasias, the most common pathology among these epilepsy-related malformations. Specific radiological and surgical features are also highlighted, so a thorough overview of cortical dysplasias is provided.
Asunto(s)
Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Humanos , Malformaciones del Desarrollo Cortical/complicaciones , Epilepsia/etiología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética/efectos adversosRESUMEN
Focal cortical dysplasia (FCD) is a congenital brain malformation that is closely associated with epilepsy. Early and accurate diagnosis is essential for effectively treating and managing FCD. Magnetic resonance imaging (MRI)-one of the most commonly used non-invasive neuroimaging methods for evaluating the structure of the brain-is often implemented along with automatic methods to diagnose FCD. In this review, we define three categories for FCD identification based on MRI: visual, semi-automatic, and fully automatic methods. By conducting a systematic review following the PRISMA statement, we identified 65 relevant papers that have contributed to our understanding of automatic FCD identification techniques. The results of this review present a comprehensive overview of the current state-of-the-art in the field of automatic FCD identification and highlight the progress made and challenges ahead in developing reliable, efficient methods for automatic FCD diagnosis using MRI images. Future developments in this area will most likely lead to the integration of these automatic identification tools into medical image-viewing software, providing neurologists and radiologists with enhanced diagnostic capabilities. Moreover, new MRI sequences and higher-field-strength scanners will offer improved resolution and anatomical detail for precise FCD characterization. This review summarizes the current state of automatic FCD identification, thereby contributing to a deeper understanding and the advancement of FCD diagnosis and management.
Asunto(s)
Displasia Cortical Focal , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Encéfalo , Programas InformáticosRESUMEN
Focal cortical dysplasias are a type of malformations of cortical development that are a common cause of drug-resistant focal epilepsy. Surgical treatment is a viable option for some of these patients, with their outcome being highly related to complete surgical resection of lesions visible in magnetic resonance imaging (MRI). However, subtle lesions often go undetected on conventional imaging. Several methods to analyze MRI have been proposed, with the common goal of rendering subtle cortical lesions visible. However, most image-processing methods are targeted to detect the macroscopic characteristics of cortical dysplasias, which do not always correspond to the microstructural disarrangement of these cortical malformations. Quantitative analysis of diffusion-weighted MRI (dMRI) enables the inference of tissue characteristics, and novel methods provide valuable microstructural features of complex tissue, including gray matter. We investigated the ability of advanced dMRI descriptors to detect diffusion abnormalities in an animal model of cortical dysplasia. For this purpose, we induced cortical dysplasia in 18 animals that were scanned at 30 postnatal days (along with 19 control animals). We obtained multi-shell dMRI, to which we fitted single and multi-tensor representations. Quantitative dMRI parameters derived from these methods were queried using a curvilinear coordinate system to sample the cortical mantle, providing inter-subject anatomical correspondence. We found region- and layer-specific diffusion abnormalities in experimental animals. Moreover, we were able to distinguish diffusion abnormalities related to altered intra-cortical tangential fibers from those associated with radial cortical fibers. Histological examinations revealed myelo-architectural abnormalities that explain the alterations observed through dMRI. The methods for dMRI acquisition and analysis used here are available in clinical settings and our work shows their clinical relevance to detect subtle cortical dysplasias through analysis of their microstructural properties.
RESUMEN
Introduction: Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. According to the 2022 International League Against Epilepsy classification, FCD type II is characterized by dysmorphic neurons (IIa and IIb) and may be associated with balloon cells (IIb). We present a multicentric study to evaluate the transcriptomes of the gray and white matters of surgical FCD type II specimens. We aimed to contribute to pathophysiology and tissue characterization. Methods: We investigated FCD II (a and b) and control samples by performing RNA-sequencing followed by immunohistochemical validation employing digital analyses. Results: We found 342 and 399 transcripts differentially expressed in the gray matter of IIa and IIb lesions compared to controls, respectively. Cholesterol biosynthesis was among the main enriched cellular pathways in both IIa and IIb gray matter. Particularly, the genes HMGCS1, HMGCR, and SQLE were upregulated in both type II groups. We also found 12 differentially expressed genes when comparing transcriptomes of IIa and IIb lesions. Only 1 transcript (MTRNR2L12) was significantly upregulated in FCD IIa. The white matter in IIa and IIb lesions showed 2 and 24 transcripts differentially expressed, respectively, compared to controls. No enriched cellular pathways were detected. GPNMB, not previously described in FCD samples, was upregulated in IIb compared to IIa and control groups. Upregulations of cholesterol biosynthesis enzymes and GPNMB genes in FCD groups were immunohistochemically validated. Such enzymes were mainly detected in both dysmorphic and normal neurons, whereas GPNMB was observed only in balloon cells. Discussion: Overall, our study contributed to identifying cortical enrichment of cholesterol biosynthesis in FCD type II, which may correspond to a neuroprotective response to seizures. Moreover, specific analyses in either the gray or the white matter revealed upregulations of MTRNR2L12 and GPNMB, which might be potential neuropathological biomarkers of a cortex chronically exposed to seizures and of balloon cells, respectively.
RESUMEN
Focal Cortical Dysplasia (FCD) is a group of focal developmental malformations of the cerebral cortex cytoarchitecture. FCD usually manifests as medically intractable epilepsy, especially in young children. Live patients are diagnosed by radiological examination such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG PET), magnetoencephalography (MEG), diffusion-tensor imaging (DTI), and intracranial electroencephalogram (EEG). While some cases can be missed by radiological examination, they are usually diagnosed on the histopathological examination of the surgically removed specimens of medically intractable epilepsy patients. We report a case of a young girl with cerebral palsy, mental retardation, and seizure disorder who died in her sleep. The deceased was diagnosed with FCD type III with hippocampal sclerosis on histopathological examination at autopsy. H & E stain and NeuN immunohistochemistry neuronal cell marker were used to demonstrate the findings of FCD.
RESUMEN
ABSTRACT Focal Cortical Dysplasia (FCD) is a group of focal developmental malformations of the cerebral cortex cytoarchitecture. FCD usually manifests as medically intractable epilepsy, especially in young children. Live patients are diagnosed by radiological examination such as magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG PET), magnetoencephalography (MEG), diffusion-tensor imaging (DTI), and intracranial electroencephalogram (EEG). While some cases can be missed by radiological examination, they are usually diagnosed on the histopathological examination of the surgically removed specimens of medically intractable epilepsy patients. We report a case of a young girl with cerebral palsy, mental retardation, and seizure disorder who died in her sleep. The deceased was diagnosed with FCD type III with hippocampal sclerosis on histopathological examination at autopsy. H & E stain and NeuN immunohistochemistry neuronal cell marker were used to demonstrate the findings of FCD.
RESUMEN
BACKGROUND: Focal cortical dysplasias (FCD) represent highly intrinsically epileptogenic lesions that require complete resection for seizure control. Resection of pure motor strip FCD can be challenging. Effective control of postoperative seizures is crucial and extending the boundaries of resection in an eloquent zone remains controversial. OBSERVATIONS: The authors report a 52-year-old right-handed male with refractory epilepsy. The seizure phenotype was a focal crisis with preserved awareness and a clonic motor onset of right-hemibody. Epilepsy surgery protocol demonstrated a left pure motor strip FCD and a full-awake resective procedure with motor brain mapping was performed. Further resection of surgical boundaries monitoring function along intraoperative motor tasks with no direct electrical stimulation corroborated by intraoperative-neuromonitorization was completed as the final part of the surgery. In the follow-up period of 3-years, the patient has an Engel-IB seizure-control with mild distal lower limb palsy and no gate compromise. LESSONS: This report represents one of the few cases with pure motor strip FCD resection. In a scenario similar to this case, the authors consider that this variation can be useful to improve seizure control and the quality of life of these patients by extending the resection of a more extensive epileptogenic zone minimizing functional damage.
RESUMEN
OBJECTIVE: This study was undertaken to evaluate superficial-white matter (WM) and deep-WM magnetic resonance imaging diffusion tensor imaging (DTI) metrics and identify distinctive patterns of microstructural abnormalities in focal epilepsies of diverse etiology, localization, and response to antiseizure medication (ASM). METHODS: We examined DTI data for 113 healthy controls and 113 patients with focal epilepsies: 51 patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) refractory to ASM, 27 with pharmacoresponsive TLE-HS, 15 with temporal lobe focal cortical dysplasia (FCD), and 20 with frontal lobe FCD. To assess WM microstructure, we used a multicontrast multiatlas parcellation of DTI. We evaluated fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD), and assessed within-group differences ipsilateral and contralateral to the epileptogenic lesion, as well as between-group differences, in regions of interest (ROIs). RESULTS: The TLE-HS groups presented more widespread superficial- and deep-WM diffusion abnormalities than both FCD groups. Concerning superficial WM, TLE-HS groups showed multilobar ipsilateral and contralateral abnormalities, with less extensive distribution in pharmacoresponsive patients. Both the refractory TLE-HS and pharmacoresponsive TLE-HS groups also presented pronounced changes in ipsilateral frontotemporal ROIs (decreased FA and increased MD, RD, and AD). Conversely, FCD patients showed diffusion changes almost exclusively adjacent to epileptogenic areas. SIGNIFICANCE: Our findings add further evidence of widespread abnormalities in WM diffusion metrics in patients with TLE-HS compared to other focal epilepsies. Notably, superficial-WM microstructural damage in patients with FCD is more restricted around the epileptogenic lesion, whereas TLE-HS groups showed diffuse WM damage with ipsilateral frontotemporal predominance. These findings suggest the potential of superficial-WM analysis for better understanding the biological mechanisms of focal epilepsies, and identifying dysfunctional networks and their relationship with the clinical-pathological phenotype. In addition, lobar superficial-WM abnormalities may aid in the diagnosis of subtle FCDs.
Asunto(s)
Epilepsia del Lóbulo Temporal , Malformaciones del Desarrollo Cortical , Sustancia Blanca , Atrofia/patología , Imagen de Difusión Tensora/métodos , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical/patología , Esclerosis/patología , Sustancia Blanca/patologíaRESUMEN
Objective: To report our initial experience using an adult-template MAP in drug-resistant focal epilepsy in five children with apparently normal MRI. Methods: Patients selected were highly suspicious of harboring focal structural lesions and had negative brain MRI studies. MAP was performed using a locally obtained adult database as a template. Results were reviewed by two neuroradiologists. Pertinence of MAP-positive areas was confirmed by the focal epileptic hypothesis or by pathology when possible (J Neuroradiol, 39, 2012, 87). Visual analysis was performed using Mango Software. MRI studies were reanalyzed at the workstation with knowledge of the clinical suspicion to confirm or discard the possibility of FCD. Results: Five patients aged 19-48 months were studied, all with initial 3T MRI studies interpreted as normal. All had focal epileptic hypothesis with coherence of clinical seizure characterization and electroencephalographic findings. In two patients, histology showed type 1 FCD. Due to the age of our subjects, the junction map always highlighted the subcortical white matter in relationship to maturity differences. FCD was identified as asymmetric U-shaped highlighted regions in the junction map. Significance: FCD is the most frequent pathology reported in pediatric epilepsy surgery series (Epileptic Disord, 18, 2016, 240). Significant number of FCDs may be overlooked on MRIs, reducing the odds of seizure freedom after surgery (Epilepsy Res, 89, 2010, 310). MAP is an image postprocessing method for enhanced visualization of FCD; however, when using an adult template in developing brains, normal subcortical regions may be highlighted as pathological. Creating a pediatric template is difficult, due to the need for general anesthesia to acquire the MRI database. Here, we were able to show that MAP identified FCDs as asymmetric "U-" shaped highlighted regions in the junction maps of all five patients, which may indicate that obtaining childhood databases for this purpose may not be necessary and that adult ones suffice for diagnosis of FCD.
Asunto(s)
Bases de Datos Factuales , Epilepsia Refractaria/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Adulto , Preescolar , Epilepsia Refractaria/diagnóstico , Electroencefalografía , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Convulsiones/patología , Sustancia Blanca/patología , Adulto JovenRESUMEN
Epilepsy is among one of the most common neurologic disorders. The role of magnetic resonance imaging (MRI) in the diagnosis and management of patients with epilepsy is well established, and most patients with epilepsy are likely to undergo at least one or more MRI examinations in the course of their disease. Recent advances in high-field MRI have enabled high resolution in vivo visualization of small and intricate anatomic structures that are of great importance in the assessment of seizure disorders. Familiarity with normal anatomic variations is essential in the accurate diagnosis and image interpretation, as these variations may be mistaken for epileptogenic foci, leading to unnecessary follow-up imaging, or worse, unnecessary treatment. After a brief overview of normal imaging anatomy of the mesial temporal lobe, this article will review a few important common and uncommon anatomic variations, mimics, and pitfalls that may be encountered in the imaging evaluation of patients with epilepsy.
Asunto(s)
Epilepsia/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Malformaciones del Desarrollo Cortical de Grupo I/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Epilepsia/patología , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical de Grupo I/patología , Lóbulo Temporal/patologíaRESUMEN
A 6 year-old male, with seizures characterized by abnormal epigastric sensation, behavioral arrest, upper extremities search automatisms and secondary tonic-clonic generalization. Magnetic resonance imaging showed a hypointense cystic extra-axial image with an increase in the thickness of the convolutions in the first and second gyri of the right frontal lobe. It was decided to resect the frontal lesion with transoperative motor mapping. Morphological and immunohistochemical findings corresponded to dysembryoplastic neuroepithelial tumor with focal cortical dysplasia. Adequate semiology, analysis of the electroencephalogram, and imaging studies allowed treating adequately the cortical dysplasia. At present, the patient is seizure-free without medication (Engel IA).
Niño de 6 años con crisis caracterizadas por sensación epigástrica, arresto conductual, automatismos de búsqueda y generalización tónico-clónica secundaria. La resonancia magnética mostró una imagen extraaxial quística y un aumento del grosor de las circunvoluciones del primer y segundo giros del lóbulo frontal derecho. Se decidió resecar primero la lesión frontal con guía por mapeo transcortical intraoperatorio. Los hallazgos morfológicos e inmunohistoquímicos mostraron un tumor neuroepitelial disembrioplásico con displasia cortical focal. La semiología, el análisis del electroencefalograma y la imagen permitieron orientar el tratamiento. Actualmente el paciente está libre de crisis y sin medicamentos (Engel IA).
Asunto(s)
Quistes Aracnoideos , Neoplasias Encefálicas , Epilepsia , Glioma , Neoplasias Neuroepiteliales , Quistes Aracnoideos/complicaciones , Quistes Aracnoideos/diagnóstico por imagen , Quistes Aracnoideos/cirugía , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Niño , Electroencefalografía , Humanos , Imagen por Resonancia Magnética , Masculino , Neoplasias Neuroepiteliales/complicaciones , Neoplasias Neuroepiteliales/diagnóstico por imagen , Neoplasias Neuroepiteliales/cirugía , Convulsiones/etiologíaRESUMEN
BACKGROUND: In several epilepsy etiologies, the macroscopic appearance of the epileptogenic tissue is identical to the normal, which makes it hard to balance between how much cytoreduction or disconnection and brain tissue preservation must be done. A strategy to tackle this situation is by evaluating brain metabolism during surgery using infrared thermography mapping (IrTM). METHODS: In 12 epilepsy surgery cases that involved the temporal lobe, we correlated the IrTM, electrocorticography, and neuropathology results. RESULTS: Irritative zones (IZ) had a lower temperature in comparison to the surrounding cortex with normal electric activity (difference in temperature (ΔT) from 1.2 to 7.1, mean 3.40°C standard deviation ± 1.61). The coldest zones correlated exactly with IZ in 9/10 cortical dysplasia (CD) cases. In case 3, the coldest area was at 1 cm away from the IZ. In 10/10 dysplasia cases (cases 1-4, 6-11), there was a radial heating pattern originating from the coldest cortical point. In 2/2 neoplasia cases, the temporal lobe cortical temperature was more homogeneous than in the CD cases, with no radial heating pattern, and there were no IZ detected. In case 8, we found the coldest IrTM recording in the hippocampus, which correlated to the maximal irritative activity recorded by strip electrodes. The ΔT is inversely proportional to epilepsy chronicity. CONCLUSION: IrTM could be useful in detecting hypothermic IZ in CD cases. As the ΔT is inversely proportional to epilepsy chronicity, this variable could affect the metabolic thermic patterns of the human brain.
RESUMEN
Focal cortical dysplasia (FCD) is a malformation of cortical development which is strongly associated with drug-refractory epilepsy. Certain studies have demonstrated an increase in mTOR signaling in patients with FCD on the basis of observation of phosphorylated molecules. The aim of the present study was to verify the differences in genes involved in cell proliferation, adhesion, and control of apoptosis during embryonic neurogenesis in iPSCs derived from the Focal Cortical Dysplasia. Fibroblasts were obtained from the skin biopsies of patients with FCD (n = 2) and controls (n = 2). iPSCs were generated by exposing the fibroblasts to viral vectors that contained the Yamanaka factors (OCT4, SOX2, KLF4, and c-MYC genes) responsible for promoving cell reprogramation. The fibroblasts and iPSCs were tested during different phases of neurodifferentiation for migration capacity and expression of the genes involved in the PI3K pathway. Fibroblasts of patients with FCD migrated with greater intensity during the first two time points of analyses. iPSCs did not exhibit any difference in cell migration between the groups. Fibroblasts, brain tissue, and iPSCs of the patients with FCD exhibited a significant reduction in the relative expression values of 4EBP-1. During neurodevelopment, the iPSCs from patients with FCD exhibited a reduction in the expression of cIAP-1, cIAP-2, PI3K, ß-Catenin and 4EBP-1 gene. We suggest that the differences observed in the migration potential of adult cells and in the gene expression related to the fundamental processes involved in normal brain development during the neurodifferentiation process might be associated with cortical alteration in the patients with FCD.
Asunto(s)
Apoptosis/genética , Adhesión Celular/genética , Proliferación Celular/genética , Células Madre Pluripotentes Inducidas/fisiología , Malformaciones del Desarrollo Cortical/genética , Neurogénesis/genética , Adulto , Células Cultivadas , Femenino , Fibroblastos/fisiología , Humanos , Factor 4 Similar a Kruppel , Masculino , Persona de Mediana EdadRESUMEN
Focal cortical dysplasias (FCDs) are a frequent cause of epilepsy. It has been reported that up to 40% of them cannot be visualized with conventional magnetic resonance imaging (MRI). The main objective of this work was to evaluate by means of a retrospective descriptive observational study whether the automated brain segmentation is useful for detecting FCD. One hundred and fifty-five patients, who underwent surgery between the years 2009 and 2016, were reviewed. Twenty patients with FCD confirmed by histology and a preoperative segmentation study, with ages ranging from 3 to 43â¯years (14 men), were analyzed. Three expert neuroradiologists visually analyzed conventional and advanced MRI with automated segmentation. They were classified into positive and negative concerning visualization of FCD by consensus. Of the 20 patients evaluated with conventional MRI, 12 were positive for FCD. Of the negative studies for FCD with conventional MRI, 2 (25%) were positive when they were analyzed with automated segmentation. In 13 of the 20 patients (with positive segmentation for FCD), cortical thickening was observed in 5 (38.5%), while pseudothickening was observed in the rest of patients (8, 61.5%) in the anatomical region of the brain corresponding to the dysplasia. This work demonstrated that automated brain segmentation helps to increase detection of FCDs that are unable to be visualized in conventional MRI images.