Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(23): 14954-14967, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820368

RESUMEN

Chitin nanofibrils (ChNF) sourced from discarded marine biomass are shown as effective stabilizers of carbon nanomaterials in aqueous media. Such stabilization is evaluated for carbon nanotubes (CNT) considering spatial and temporal perspectives by using experimental (small-angle X-ray scattering, among others) and theoretical (atomistic simulation) approaches. We reveal that the coassembly of ChNF and CNT is governed by hydrophobic interactions, while electrostatic repulsion drives the colloidal stabilization of the hybrid ChNF/CNT system. Related effects are found to be transferable to multiwalled carbon nanotubes and graphene nanosheets. The observations explain the functionality of hybrid membranes obtained by aqueous phase processing, which benefit from an excellent areal mass distribution (correlated to piezoresistivity), also contributing to high electromechanical performance. The water resistance and flexibility of the ChNF/CNT membranes (along with its tensile strength at break of 190 MPa, conductivity of up to 426 S/cm, and piezoresistivity and light absorption properties) are conveniently combined in a device demonstration, a sunlight water evaporator. The latter is shown to present a high evaporation rate (as high as 1.425 kg water m-2 h-1 under one sun illumination) and recyclability.

2.
ChemistryOpen ; 12(10): e202300094, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37803419

RESUMEN

The choice of capping agents used during the synthesis process of quantum dots (QDs) can significantly influence their fate and fundamental properties. Hence, choosing an appropriate capping agent is a critical step in both synthesis and biomedical application of QDs. In this research, ZnS QDs were synthesized via chemical precipitation process and three commonly employed capping agents, namely mercaptoethanol (ME), mercaptoacetic acid (MAA), and cysteamine (CA), were used to stabilize the QDs. This study was aimed to examine how these capping agents impact the physicochemical and optical characteristics of ZnS QDs, as well as their interactions with biological systems. The findings revealed that the capping agents had considerable effects on the behavior and properties of ZnS QDs. MAA-QD exhibited superior crystal lattice, smaller size, and significant quantum yield (QY). In contrast, CA-QDs demonstrated the lowest QY and the highest tendency for aggregation. ME-QDs exhibited intermediate characteristics, along with an acceptable level of cytotoxicity, rapid uptake by cells, and efficient escape from lysosomes. Consequently, it is advisable to select capping agents in accordance with the specific objectives of the research.


Asunto(s)
Puntos Cuánticos , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Sulfuros/química , Compuestos de Zinc/química , Lisosomas
3.
Carbohydr Polym ; 302: 120354, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604044

RESUMEN

Nanocellulose is a well-known stabilizer for several colloidal dispersions, including emulsions and solid nanoparticles, replacing surfactants, polymers, and other additives, and therefore providing more minimalistic and eco-friendly formulations. However, could this ability be extended to stabilize oil droplets and inorganic nanoparticles simultaneously in the same colloidal system? This work aimed to answer this question. We evaluated both cationic and anionic nanofibrillated celluloses to stabilize both titanium dioxide nanoparticles and oil droplets. The resulting suspensions held their macroscopic stability for up to 2 months, regardless of pH or surface charge. Cryo-TEM images revealed a complex network formation involving nanofibers and TiO2 nanoparticles, which agrees with the high viscosity values and gel-like behavior found in rheology measurements. We propose that the formation of this network is responsible for the simultaneous stabilization of oil droplets and TiO2 nanoparticles, and that this may be used as a formulation tool for other complex systems.


Asunto(s)
Celulosa , Nanopartículas , Titanio , Emulsiones
4.
ACS Appl Mater Interfaces ; 14(1): 2275-2290, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931807

RESUMEN

In this work, we unravel the role of surface properties of colloidal particles on the formation of supraparticles (clusters of colloidal particles) in a colloidal Ouzo droplet. Self-lubricating colloidal Ouzo droplets are an efficient and simple approach to form supraparticles, overcoming the challenge of the coffee stain effect in situ. Supraparticles are an efficient route to high-performance materials in various fields, from catalysis to carriers for therapeutics. Yet, the role of the surface of colloidal particles in the formation of supraparticles using Ouzo droplets remains unknown. Therefore, we used silica particles as a model system and compared sterically stabilized versus electrostatically stabilized silica particles─positively and negatively charged. Additionally, we studied the effect of hydration. Hydrated negatively charged silica particles and sterically stabilized silica particles form supraparticles. Conversely, dehydrated negatively charged silica particles and positively charged amine-coated particles form flat film-like deposits. Notably, the assembly process is different for all the four types of particles. The surface modifications alter (a) the contact line motion of the Ouzo droplet and (b) the particle-oil and particle-substrate interactions. These alterations modify the particle accumulation at the various interfaces, which ultimately determines the shape of the final deposit. Thus, by modulating the surface properties of the colloidal particles, we can tune the shape of the final deposit, from a spheroidal supraparticle to a flat deposit. In the future, this approach can be used to tailor the supraparticles for applications such as optics and catalysis, where the shape affects the functionality.

5.
J Colloid Interface Sci ; 574: 207-216, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32315867

RESUMEN

HYPOTHESIS: Hydrophobic oleic acid/water interfaces are negatively charged. Hence, the use of cationic nanocelluloses as stabilizers of Pickering emulsions could improve the colloidal stability due to the electrostatic complexation at the oil-water interface. EXPERIMENTS: Two cationic nanofibrillated cellulose (cNFCs) with two degrees of substitution were prepared and used as stabilizers of Pickering emulsions. The adsorption of cNFCs at the oil: water interface was evaluated by interfacial tension, atomic force microscopy, and centrifugation measurements. LUMiSizer and optical microscopy techniques were used to analyze the colloidal stability and oil droplets morphology, respectively. Besides, the rheological behavior of the continuous aqueous phase was determined through flow and stress sweep curves. Finally, the dispersion of cNFCs in a diluted emulsion was visualized by cryogenic transmission electron microscopy (cryo-TEM). FINDINGS: Cationic NFCs were more efficient in partitioning to the oil:water interface compared to their anionic analogous, oCNF. The electrostatic attraction between the positively charged trimethylammonium groups and the negatively charged deprotonated oleic acid reduced the interfacial tension and improved the colloidal stability of O/W Pickering emulsions. cNFCs dispersed in the aqueous phase were found to increase the viscosity, decelerating the oil drops coalescence. Therefore, the stabilization of cNFCs Pickering emulsions had a synergistic effect from the electrostatic complexation at the liquid-liquid interface and network formation in the aqueous phase, as visualized by cryo-TEM.

6.
Int J Mol Sci ; 13(9): 11610-11642, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23109874

RESUMEN

In the past few years, growing attention has been devoted to the study of the interactions taking place in mixed systems of phospholipid membranes (for instance in the form of vesicles) and hard nanoparticles (NPs). In this context liposomes (vesicles) may serve as versatile carriers or as a model system for biological membranes. Research on these systems has led to the observation of novel hybrid structures whose morphology strongly depends on the charge, composition and size of the interacting colloidal species as well as on the nature (pH, ionic strength) of their dispersing medium. A central role is played by the phase behaviour of phospholipid bilayers which have a tremendous influence on the liposome properties. Another central aspect is the incorporation of nanoparticles into vesicles, which is intimately linked to the conditions required for transporting a nanoparticle through a membrane. Herein, we review recent progress made on the investigations of the interactions in liposome/nanoparticle systems focusing on the particularly interesting structures that are formed in these hybrid systems as well as their potential applications.


Asunto(s)
Coloides/química , Liposomas/química , Nanopartículas/química , Fosfolípidos/química , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Concentración Osmolar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA