Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Virol ; 97(9): e0102523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668367

RESUMEN

Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive-strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection leads to an increase in DMV formation through a replication-dependent mechanism that requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K complex lead to significant reduction in DMVs, as well as viral replication. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. IMPORTANCE These studies provide critical new evidence that astrovirus replication requires formation of double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive-sense RNA virus infections.


Asunto(s)
Mamastrovirus , Fosfatidilinositol 3-Quinasa , Replicación Viral , Humanos , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Membranas Intracelulares/metabolismo , Orgánulos , Fosfatidilinositol 3-Quinasa/metabolismo , Virus ARN , Mamastrovirus/fisiología , Transducción de Señal
2.
mBio ; 14(1): e0322122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656016

RESUMEN

Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.


Asunto(s)
Listeria monocytogenes , Listeria , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proliferación Celular , Células HeLa , Proteínas Hemolisinas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Vacuolas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III
3.
Front Cell Dev Biol ; 10: 851166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172279

RESUMEN

Impairment or dysregulation of autophagy has been implicated in many human pathologies ranging from neurodegenerative diseases, infectious diseases, cardiovascular diseases, metabolic diseases, to malignancies. Efforts have been made to explore the therapeutic potential of pharmacological autophagy activators, as beneficial health effects from caloric restriction or physical exercise are linked to autophagy activation. However, the lack of specificity remains the major challenge to the development and clinical use of autophagy activators. One candidate of specific autophagy activators is Tat-BECN1 peptide, derived from Beclin 1 subunit of Class III PI3K complexes. Here, we summarize the molecular mechanisms by which Tat-BECN1 peptide activates autophagy, the strategies for optimization and development, and the applications of Tat-BECN1 peptide in cellular and organismal models of physiology and pathology.

4.
Cell Rep ; 37(8): 110049, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34788596

RESUMEN

Positive-strand RNA viruses replicate in close association with rearranged intracellular membranes. For hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), these rearrangements comprise endoplasmic reticulum (ER)-derived double membrane vesicles (DMVs) serving as RNA replication sites. Cellular factors involved in DMV biogenesis are poorly defined. Here, we show that despite structural similarity of viral DMVs with autophagosomes, conventional macroautophagy is dispensable for HCV and SARS-CoV-2 replication. However, both viruses exploit factors involved in autophagosome formation, most notably class III phosphatidylinositol 3-kinase (PI3K). As revealed with a biosensor, PI3K is activated in cells infected with either virus to produce phosphatidylinositol 3-phosphate (PI3P) while kinase complex inhibition or depletion profoundly reduces replication and viral DMV formation. The PI3P-binding protein DFCP1, recruited to omegasomes in early steps of autophagosome formation, participates in replication and DMV formation of both viruses. These results indicate that phylogenetically unrelated HCV and SARS-CoV-2 exploit similar components of the autophagy machinery to create their replication organelles.


Asunto(s)
Autofagia/fisiología , Hepacivirus/fisiología , SARS-CoV-2/fisiología , Compartimentos de Replicación Viral/metabolismo , Autofagosomas/metabolismo , Proteínas Portadoras/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
5.
J Med Virol ; 93(4): 2076-2083, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33026649

RESUMEN

The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the coronavirus disease 19 (COVID-19) pandemic due to its high transmissibility and early immunosuppression. Previous studies on other betacoronaviruses suggested that betacoronavirus infection is associated with the host autophagy pathway. However, it is unclear whether any components of autophagy or virophagy can be therapeutic targets for COVID-19 treatment. In this report, we examined the antiviral effect of four well-characterized small molecule inhibitors that target the key cellular factors involved in key steps of the autophagy pathway. They include small molecules targeting the ULK1/Atg1 complex involved in the induction stage of autophagy (ULK1 inhibitor SBI0206965), the ATG14/Beclin1/VPS34 complex involved in the nucleation step of autophagy (class III PI3-kinase inhibitor VPS34-IN1), and a widely-used autophagy inhibitor that persistently inhibits class I and temporary inhibits class III PI3-kinase (3-MA) and a clinically approved autophagy inhibitor that suppresses autophagy by inhibiting lysosomal acidification and prevents the formation of autophagolysosome (HCQ). Surprisingly, not all the tested autophagy inhibitors suppressed SARS-CoV-2 infection. We showed that inhibition of class III PI3-kinase involved in the initiation step of both canonical and noncanonical autophagy potently suppressed SARS-CoV-2 at a nano-molar level. In addition, this specific kinase inhibitor VPS34-IN1, and its bioavailable analogue VVPS34-IN1, potently inhibited SARS-CoV-2 infection in ex vivo human lung tissues. Taken together, class III PI3-kinase may be a possible target for COVID-19 therapeutic development.


Asunto(s)
Antivirales/farmacología , Autofagia/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Fosfatidilinositol 3-Quinasas Clase III/antagonistas & inhibidores , Pulmón , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Adaptadoras del Transporte Vesicular/antagonistas & inhibidores , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Humanos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Células Vero
6.
Biology (Basel) ; 9(11)2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171845

RESUMEN

The major pathway for the production of the low-abundance membrane lipid phosphatidylinositol 3-phosphate (PI(3)P) synthesis is catalyzed by class III phosphoinositide 3-kinase (PI3K) Vps34. The absence of Vps34 was previously found to disrupt autophagy and other membrane-trafficking pathways in some sensory neurons, but the roles of phosphatidylinositol 3-phosphate and Vps34 in cone photoreceptor cells have not previously been explored. We found that the deletion of Vps34 in neighboring rods in mouse retina did not disrupt cone function up to 8 weeks after birth, despite diminished rod function. Immunoblotting and lipid analysis of cones isolated from the cone-dominant retinas of the neural retina leucine zipper gene knockout mice revealed that both PI(3)P and Vps34 protein are present in mouse cones. To determine whether Vps34 and PI(3)P are important for cone function, we conditionally deleted Vps34 in cone photoreceptor cells of the mouse retina. Overall retinal morphology and rod function appeared to be unaffected. However, the loss of Vps34 in cones resulted in the loss of structure and function. There was a substantial reduction throughout the retina in the number of cones staining for M-opsin, S-opsin, cone arrestin, and peanut agglutinin, revealing degeneration of cones. These studies indicate that class III PI3K, and presumably PI(3)P, play essential roles in cone photoreceptor cell function and survival.

7.
J Cell Physiol ; 235(11): 7803-7815, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31930515

RESUMEN

Deoxynivalenol (DON) is a major mycotoxin from the trichothecene family of mycotoxins produced by Fusarium fungi. It can cause a variety of adverse effects on human and farm animal health. Here, we determined the effect of DON on the Class III phosphatidylinositol 3-kinase (PIK3C3)/beclin 1/B cell lymphoma-2 (Bcl-2) pathway in PC12 cells and the relationship between autophagy and apoptosis. The effects of DON were evaluated based on the apoptosis ratio; the typical indicators of autophagy, including cellular morphology, acridine orange- and monodansylcadaverine-labeled vacuoles, green fluorescent protein-microtubule associated protein 1 light chain 3 (LC3) localization, and LC3 immunofluorescence; and the expression of key autophagy-related genes and proteins, that is, PIK3C3, beclin 1, Bcl-2, LC3, and p62. The relationship between autophagy and apoptosis was analyzed by western blot analysis and flow cytometry. DON-induced PC12 cell morphological changes and autophagy significantly. PIK3C3, beclin 1, and LC3 increased in tandem with the DON concentration used; Bcl-2 and p62 expression decreased as DON concentrations increased. Moreover, the PIK3C3/beclin 1/Bcl-2 signaling pathway played a role in DON-induced autophagy. Our findings suggest that DON can induce autophagy by activating the PIK3C3/beclin 1/Bcl-2 signaling pathway and that autophagy may play a positive role in reducing DON-induced apoptosis.


Asunto(s)
Autofagia/efectos de los fármacos , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tricotecenos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
8.
Chinese Pharmaceutical Journal ; (24): 900-907, 2020.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-857684

RESUMEN

OBJECTIVE: To investigate the effect of minimally modified low-density lipoprotein (mmLDL) on ETA receptor of mesenteric artery (endothelin type A receptors, ETA) in mice for the first time and whether autophagy is involved in this process. METHODS: Mice were injected mmLDL in the tail vein and intraperitoneally with Class III PI3K autophagy pathway inhibitor 6-amino-3-methylpurine (3-MA) to explore the role of autophagy in mmLDL treated mice. The changes of vasoconstriction curve of mesenteric artery induced by ET-1 (endothelin 1) in mice were observed by a sensitive myograph system. ETA receptor was detected by RT-PCR quantitative mRNA and Western blot. The protein levels of Class III PI3K, Beclin-1, LC3-Ⅱ/, p62 and p-NF-κB, NF-κB were detected by Western blot. RESULTS: The contractility curve of ET-1 induced by mmLDL was significantly enhanced, showing that the Emax value increased from the nomal saline (NS) group (184.87±7.46)% to (319.91±20.31)% (P < 0.001), the pEC50 increased from NS group (8.05±0.05) to (9.11±0.09) (P<0.01). mmLDL up-regulated Class III PI3K,beclin-1,LC3-Ⅱ/ and down-regulated p62 protein level, at the same time, it also caused the ETA receptor mRNA level, protein expression increased significantly, up-regulated the protein level of p-NF-κB; intraperitoneal injection of 3-MA inhibits these effects of mmLDL. CONCLUSION: mmLDL can activate autophagy and down-stream NF-κB pathway through Class III PI3K/Beclin-1 pathway to up-regulate ETA receptor.

9.
Cell Tissue Res ; 369(2): 381-394, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28436000

RESUMEN

Our aim is to gain insight into the mechanisms underlying the anti-atrophic effects of leucine, namely, the way that this amino acid can restrain the up-regulation of MuRF1 and Mafbx/Atrogin-1 in muscle atrophy. Male rats received dietary leucine supplementation for 1-3 days, during which time their hind limbs were immobilized. Our results showed that leucine inhibited Forkhead Box O3 (FoxO3a) translocation to cell nuclei. In addition, leucine was able to reverse the expected reduction of FoXO3a ubiquitination caused by immobilization. Unexpectedly, leucine promoted these effects independently of the Class I PI3K/Akt pathway. Vacuolar protein sorting 34 (VPS34; a Class III PI3K) was strongly localized in nuclei after immobilization and leucine supplementation was able to prevent this effect. In experiments on cultured primary myotubes, dexamethasone led to the localization of VPS34 in the nucleus. In addition, the pharmacological inhibition of VPS34 blocked VPS34 nuclear localization and impaired the protective effect of leucine upon myotube trophicity. Finally, the pharmacological inhibition of VPS34 in primary myotubes prevented the protective effects of leucine upon MuRF1 and Mafbx/Atrogin-1 gene expression. Autophagy-related target genes were not responsive to leucine. Thus, we demonstrate that the anti-atrophic effect of leucine is dependent upon FoxO3a suppression and VPS34 activity.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteína Forkhead Box O3/metabolismo , Leucina/farmacología , Músculo Esquelético/patología , Atrofia Muscular/patología , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Dexametasona/farmacología , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Ubiquitinación
10.
EMBO J ; 35(5): 496-514, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834238

RESUMEN

The Beclin1-VPS34 complex is recognized as a central node in regulating autophagy via interacting with diverse molecules such as ATG14L for autophagy initiation and UVRAG for autophagosome maturation. However, the underlying molecular mechanism that coordinates the timely activation of VPS34 complex is poorly understood. Here, we identify that PAQR3 governs the preferential formation and activation of ATG14L-linked VPS34 complex for autophagy initiation via two levels of regulation. Firstly, PAQR3 functions as a scaffold protein that facilitates the formation of ATG14L- but not UVRAG-linked VPS34 complex, leading to elevated capacity of PI(3)P generation ahead of starvation signals. Secondly, AMPK phosphorylates PAQR3 at threonine 32 and switches on PI(3)P production to initiate autophagosome formation swiftly after glucose starvation. Deletion of PAQR3 leads to reduction of exercise-induced autophagy in mice, accompanied by a certain degree of disaggregation of ATG14L-associated VPS34 complex. Together, this study uncovers that PAQR3 can not only enhance the capacity of pro-autophagy class III PI3K due to its scaffold function, but also integrate AMPK signal to activation of ATG14L-linked VPS34 complex upon glucose starvation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia , Beclina-1 , Glucosa/deficiencia , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Hígado/metabolismo , Masculino , Proteínas de la Membrana , Ratones Noqueados , Músculo Esquelético/metabolismo , Carrera/fisiología , Transducción de Señal
11.
Biochem Biophys Res Commun ; 466(4): 637-43, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26385179

RESUMEN

Apelin-13, an adipokine, promotes cholesterol efflux in macrophages with antiatherosclerotic effect. Autophagy, an evolutionarily ancient response to cellular stress, has been involved in atherosclerosis. Therefore, the purpose of this study was to investigate whether apelin-13 regulates macrophage foam cell cholesterol metabolism through autophagy, and also explore the underlying mechanisms. Here, we revealed that apelin-13 decreased lipid accumulation in THP-1 derived macrophages through markedly enhancing cholesterol efflux. Our study further demonstrated that apelin-13 induced autophagy via activation of Class III phosphoinositide 3-kinase (PI3K) and Beclin-1. Inhibition of Class III PI3K and Beclin-1 suppressed the stimulatory effects of apelin-13 on autophagy activity. The present study concluded that apelin-13 reduces lipid accumulation of foam cells by activating autophagy via Class III PI3K/Beclin-1 pathway. Therefore, our results provide brand new insight about apelin-13 inhibiting foam cell formation and highlight autophagy as a promising therapeutic target in atherosclerosis.


Asunto(s)
Adipoquinas/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Células Espumosas/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de la Membrana/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Aterosclerosis/patología , Autofagia/fisiología , Beclina-1 , Línea Celular , Colesterol/metabolismo , Activación Enzimática/efectos de los fármacos , Células Espumosas/citología , Células Espumosas/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Modelos Biológicos
12.
J Cell Mol Med ; 19(7): 1710-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25851780

RESUMEN

Pathological cardiac hypertrophy often leads to heart failure. Activation of autophagy has been shown in pathological hypertrophic hearts. Autophagy is regulated positively by Class III phosphoinositide 3-kinase (PI3K). However, it is unknown whether Class III PI3K plays a role in the transition of cardiac hypertrophy to heart failure. To address this question, we employed a previously established cardiac hypertrophy model in heat shock protein 27 transgenic mice which shares common features with several types of human cardiomyopathy. Age-matched wild-type mice served as control. Firstly, a prolonged activation of autophagy, as reflected by autophagosome accumulation, increased LC3 conversion and decreased p62 protein levels, was detected in hypertrophic hearts from adaptive stage to maladaptive stage. Moreover, morphological abnormalities in myofilaments and mitochondria were presented in the areas accumulated with autophagosomes. Secondly, activation of Class III PI3K Vacuolar protein sorting 34 (Vps34), as demonstrated by upregulation of Vps34 expression, increased interaction of Vps34 with Beclin-1, and deceased Bcl-2 expression, was demonstrated in hypertrophic hearts from adaptive stage to maladaptive stage. Finally, administration with Wortmaninn, a widely used autophagy inhibitor by suppressing Class III PI3K activity, significantly decreased autophagy activity, improved morphologies of intracellular apartments, and most importantly, prevented progressive cardiac dysfunction in hypertrophic hearts. Collectively, we demonstrated that Class III PI3K plays a central role in the transition of cardiac hypertrophy to heart failure via a prolonged activation of autophagy in current study. Class III PI3K may serve as a potential target for the treatment and management of maladaptive cardiac hypertrophy.


Asunto(s)
Autofagia , Cardiomegalia/enzimología , Insuficiencia Cardíaca/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Androstadienos/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/efectos de los fármacos , Beclina-1 , Cardiomegalia/complicaciones , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/patología , Proteínas de Choque Térmico HSP27/metabolismo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Pruebas de Función Cardíaca , Humanos , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Unión Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Ultrasonografía , Regulación hacia Arriba/efectos de los fármacos , Wortmanina
13.
Cell Signal ; 27(6): 1237-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25748049

RESUMEN

Compared with normal differentiated cells, cancer cells take up much more glucose and metabolize it mainly via aerobic glycolysis. This metabolic phenotype is characterized with high expression of glucose transporters (Gluts) and pyruvate kinase M2 (PKM2). Glucose regulated protein 78 (GRP78) is a glucose-sensing protein and frequently up-regulated in cancer cells, however, whether it is directly implicated in glucose metabolism remains to be elucidated. Here we report that upon glucose deficiency, the induction of GRP78 resulted in enhanced HIF-1α transcription, accompanied by a transient increased expression of Glut-1. In addition, GRP78 was likely to facilitate the membrane translocation of Glut-1 via protein-protein interaction. Glucose starvation-stimulated GRP78 also impaired the expression of PKM2 but promoted the expression of mitochondrial pyruvate dehydrogenase A (PDHA) and B (PDHB), resulting in the metabolic shift from glycolysis to the TCA cycle. Interestingly, the inhibition of PKM2 by GRP78 was abrogated when glucose supply was restored, suggesting that GRP78 and PKM2 expressions are adaptable to the nutritional levels in the microenvironment. Further mechanistic study indicated that GRP78 overexpression activated the Class III PI3K-mediated autophagy pathway and induced autophagic degradation of IKKß, which caused inactivation of NF-κB pathway and subsequently altered the expression of PKM2 and HIF-1α. Our study establishes GRP78 and PKM2 as the crucial molecular links between cancer cell glucose metabolism and tumor microenvironment alterations.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Quinasa I-kappa B/metabolismo , Autofagia , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Células HEK293 , Células HT29 , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
14.
J Cell Sci ; 127(Pt 5): 923-8, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24587488

RESUMEN

The phosphoinositide 3-kinase (PI3K) family is important to nearly all aspects of cell and tissue biology and central to human cancer, diabetes and aging. PI3Ks are spatially regulated and multifunctional, and together, act at nearly all membranes in the cell to regulate a wide range of signaling, membrane trafficking and metabolic processes. There is a broadening recognition of the importance of distinct roles for each of the three different PI3K classes (I, II and III), as well as for the different isoforms within each class. Ongoing issues include the need for a better understanding of the in vivo complexity of PI3K regulation and cellular functions. This Cell Science at a Glance article and the accompanying poster summarize the biochemical activities, cellular roles and functional requirements for the three classes of PI3Ks. In doing so, we aim to provide an overview of the parallels, the key differences and crucial interplays between the regulation and roles of the three PI3K classes.


Asunto(s)
Fosfatidilinositol 3-Quinasas/clasificación , Animales , Humanos , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/fisiología , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/clasificación , Subunidades de Proteína/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA