Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(15): 10427-10438, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38556978

RESUMEN

Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid-base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, ß-lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH-responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.


Asunto(s)
Nanoporos , Polímeros/química , Polielectrolitos , Proteínas/química , Transporte de Proteínas
2.
ACS Appl Mater Interfaces ; 16(9): 11377-11388, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38388356

RESUMEN

Ni-rich layered oxides LiNixCoyMn1-x-yO2 (NCMs, x > 0.8) are the most promising cathode candidates for Li-ion batteries because of their superior specific capacity and cost affordability. Unfortunately, NCMs suffer from a series of formidable challenges such as structural instability and incompatibility with commonly used electrolytes, which seriously hamper their practical applications on a large scale. Herein, the Al/Ta codoping modification strategy is proposed to improve the performance of the LiNi0.83Co0.1Mn0.07O2 cathode, and the as-prepared Al/Ta-modified LiNi0.83Co0.1Mn0.07O2 delivers exceptional cycling stability with a capacity retention of 97.4% after 150 cycles at 1C and an excellent rate performance with a high capacity of 143.2 mAh g-1 even at 3C. Based on the experimental study, it is found that the structural stability of NCM is strengthened due to the regulated coordination of oxygen by introducing a robust Ta-O covalent bond, which prevents the layered structure from collapsing. Moreover, the reconstructed rock-salt-like surface is capable of effectively inhibiting interfacial side reactions as well as the overgrowth of the cathode-electrolyte interface. Theoretically, the energy of Li/Ni mixing is significantly increased with the introduction of Al and Ta elements in Al/Ta codoped NCM, leading to inhibited adverse phase transition during cycling. A feasible pathway for designing and developing advanced Ni-rich cathode materials for Li-ion batteries is provided in this work.

3.
Polymers (Basel) ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376324

RESUMEN

This article reviews the state of the art of the studies on charge regulation (CR) effects in flexible weak polyelectrolytes (FWPE). The characteristic of FWPE is the strong coupling of ionization and conformational degrees of freedom. After introducing the necessary fundamental concepts, some unconventional aspects of the the physical chemistry of FWPE are discussed. These aspects are: (i) the extension of statistical mechanics techniques to include ionization equilibria and, in particular, the use of the recently proposed Site Binding-Rotational Isomeric State (SBRIS) model, which allows the calculation of ionization and conformational properties on the same foot; (ii) the recent progresses in the inclusion of proton equilibria in computer simulations; (iii) the possibility of mechanically induced CR in the stretching of FWPE; (iv) the non-trivial adsorption of FWPE on ionized surfaces with the same charge sign as the PE (the so-called "wrong side" of the isoelectric point); (v) the influence of macromolecular crowding on CR.

4.
Small ; 19(41): e2302489, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37291975

RESUMEN

The development of flexible microelectronic systems requires the construction of high-energy-output planar micro-supercapacitors (MSCs). Herein, the localized electron density, by introducing graphene quantum dots (GQDs) on the surface of electrodes, is regulated. The enhanced local field intensity promotes ion electrostatic adsorption at the solid-liquid interface, which significantly improves the energy density of MSCs in the confined space. Local electronic structure has been investigated from the perspective of the topological analysis of the electron localization function (ELF) and the electron density. Impressively, the edges of the simulated structure exhibit a higher electron density distribution than the CC skeleton. This finding indicates that the introduced GQDs reinforce the intrinsic electrical double-layer capacitance (EDLC) and the oxygen-bearing functional groups at the edge, further increasing the pseudocapacitance performance. Moreover, the edge electron aggregation effect enables the all-carbon-based symmetric MSCs to exhibit ultra-high areal capacitance (21.78 mF cm-2 ) and excellent cycle stability (86.74% retention after 25 000 cycles). This novel surface local charge regulation strategy is also applied for intensifying ion electrostatic adsorption on Zn-ion hybrid MSCs (polyvalent metal ions) and ion-gel electrolyte MSCs (non-metallic ions). With excellent planar integration, this device demonstrates excellent flexibility and has potential applications in timing and environmental monitoring.

5.
Proc Natl Acad Sci U S A ; 120(9): e2213044120, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827263

RESUMEN

Sedimentation is a ubiquitous phenomenon across many fields of science, such as geology, astrophysics, and soft matter. Sometimes, sedimentation leads to unusual phenomena, such as the Brazil-nut effect, where heavier (granular) particles reside on top of lighter particles after shaking. We show experimentally that a Brazil-nut effect can be realized in a binary colloidal system of long-range repulsive charged particles driven purely by Brownian motion and electrostatics without the need for activity. Using theory, we argue that not only the mass-per-charge for the heavier particles needs to be smaller than the mass-per-charge for the lighter particles but also that at high overall density, the system can be trapped in a long-lived metastable state, which prevents the occurrence of the equilibrium Brazil-nut effect. Therefore, we envision that our work provides valuable insights into the physics of strongly interacting systems, such as partially glassy and crystalline structures. Finally, our theory, which quantitatively agrees with the experimental data, predicts that the shapes of sedimentation density profiles of multicomponent charged colloids are greatly altered when the particles are charge-regulating with more than one ion species involved. Hence, we hypothesize that sedimentation experiments can aid in revealing the type of ion adsorption processes that determine the particle charge and possibly the value of the corresponding equilibrium constants.

6.
Molecules ; 28(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36838845

RESUMEN

The charge plays an important role in cellulose nanocrystal (CNC) self-assembly to form liquid crystal structures, which has rarely been systematically explored. In this work, a novel technique combining atomic force microscopy force and atomistic molecular dynamics simulations was addressed for the first time to systematically investigate the differences in the CNC self-assembly caused by external positive and negative charges at the microscopic level, wherein sodium polyacrylate (PAAS) and chitosan oligosaccharides (COS) were used as external positive and negative charge additives, respectively. The results show that although the two additives both make the color of CNC films shift blue and eventually disappear, their regulatory mechanisms are, respectively, related to the extrusion of CNC particles by PAAS and the reduction in CNC surface charge by COS. The two effects both decreased the spacing between CNC particles and further increased the cross angle of CNC stacking arrangement, which finally led to the color variations. Moreover, the disappearance of color was proved to be due to the kinetic arrest of CNC suspensions before forming chiral nematic structure with the addition of PAAS and COS. This work provides an updated theoretical basis for the detailed disclosure of the CNC self-assembly mechanism.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Nanopartículas/química
7.
J Colloid Interface Sci ; 638: 825-833, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791480

RESUMEN

HYPOTHESIS: Since the discovery of the Hofmeister effect in 1888, the varied propensity of ions to proteins, DNA and other surfaces has motivated research aimed at deciphering the underlying ion specific adsorption mechanism. Experimental and numerical studies have shown that in agreement with Collins' heuristic law of matching water affinity, weakly hydrated (chaotropic) ions adsorb preferentially to hydrophobic surfaces. Here, we show that this preference is driven by expulsion of bound water molecules from the surface by the adsorbing ions. EXPERIMENTS: Using AFM spectroscopy of the force acting between two silica surfaces, we characterize surface charge regulation by adsorbed Na+ and Cs+ ions at different salt concentrations, pH values and temperatures. These data are analyzed in the framework of a recent theory of charge regulation, relating it to change in surface entropy. FINDINGS: Upon binding to the silica, cesium cations expel water molecules from the surface to create additional adsorption sites for more ions. Cs+ adsorption is thus driven by the release of hydrating water molecules and the resulting increased surface entropy. The model indicates that on average, the binding of three cesium cations releases enough water molecules to make room for two additional bound cations. Na+ does not exhibit such behavior.

8.
Chemphyschem ; 24(7): e202200746, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599672

RESUMEN

The single alpha helix (SAH) is a recurring motif in biology. The consensus sequence has a di-block architecture that includes repeats of four consecutive glutamate residues followed by four consecutive lysine residues. Measurements show that the overall helicity of sequences with consensus E4 K4 repeats is insensitive to a wide range of pH values. Here, we use the recently introduced q-canonical ensemble, which allows us to decouple measurements of charge state and conformation, to explain the observed insensitivity of SAH helicity to pH. We couple the outputs from separate measurements of charge and conformation with atomistic simulations to derive residue-specific quantifications of preferences for being in an alpha helix and for the ionizable residues to be charged vs. uncharged. We find a clear preference for accommodating uncharged Glu residues within internal positions of SAH-forming sequences. The stabilities of alpha helical conformations increase with the number of E4 K4 repeats and so do the numbers of accessible charge states that are compatible with forming conformations of high helical content. There is conformational buffering whereby charge state heterogeneity buffers against large-scale conformational changes thus making the overall helicity insensitive to large changes in pH. Further, the results clearly argue against a single, rod-like alpha helical conformation being the only or even dominant conformation in the ensembles of so-called SAH sequences.


Asunto(s)
Ácido Glutámico , Lisina , Conformación Proteica en Hélice alfa , Conformación Proteica
9.
ACS Nano ; 16(9): 15249-15260, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36075111

RESUMEN

Ion-surface interactions can alter the properties of nanopores and dictate nanofluidic transport in engineered and biological systems central to the water-energy nexus. The ion adsorption process, known as "charge regulation", is ion-specific and is dependent on the extent of confinement when the electric double layers (EDLs) between two charged surfaces overlap. A fundamental understanding of the mechanisms behind charge regulation remains lacking. Herein, we study the thermodynamics of charge regulation reactions in 20 nm SiO2 channels via conductance measurements at various concentrations and temperatures. The effective activation energies (Ea) for ion conductance at low concentrations (strong EDL overlap) are ∼2-fold higher than at high concentrations (no EDL overlap) for the electrolytes studied here: LiCl, NaCl, KCl, and CsCl. We find that Ea values measured at high concentrations result from the temperature dependence of viscosity and its influence on ion mobility, whereas Ea values measured at low concentrations result from the combined effects of ion mobility and the enthalpy of cation adsorption to the charged surface. Notably, the Ea for surface reactions increases from 7.03 kJ mol-1 for NaCl to 16.72 ± 0.48 kJ mol-1 for KCl, corresponding to a difference in surface charge of -8.2 to -0.8 mC m-2, respectively. We construct a charge regulation model to rationalize the cation-specific charge regulation behavior based on an adsorption equilibrium. Our findings show that temperature- and concentration-dependent conductance measurements can help indirectly probe the ion-surface interactions that govern transport and colloidal interactions at the nanoscale─representing a critical step forward in our understanding of charge regulation and adsorption phenomena under nanoconfinement.


Asunto(s)
Dióxido de Silicio , Cloruro de Sodio , Cationes , Electrólitos , Transporte Iónico , Termodinámica , Agua
10.
ACS Appl Mater Interfaces ; 14(35): 40014-40020, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36000945

RESUMEN

Triboelectric sensors provide an effective approach to solving the power supply problem for distributed sensing nodes. However, the poor stability and repeatability of the output signal limit its further development due to structural deficiencies and intrinsic working mechanisms. This work proposes a contact-separation mode laminated triboelectric nanogenerator (L-TENG) by introducing multifunctional layers to regulate triboelectric charges. A liquid metal Galinstan and PDMS mixture with a dense microstructure array is fabricated as the dielectric layer. Liquid squalene is filled in the space between two triboelectric layers to eliminate the influence of moisture in the air. A Cu shield film is sputtered on the surface to screen the electrostatic interference and enhance the repeatability. Owing to the effective design, the sensitivity of the L-TENG could reach 6.66 kPa-1 in the low-pressure region and 0.79 kPa-1 in the high-pressure region with a wide detection range from 8 Pa to 71.85 kPa. In addition, it also illustrates fast response and recovery times of 30 and 10 ms, respectively, and great stability in a humid environment. Finally, the L-TENG has been successfully demonstrated to monitor various physical activities in humans such as swallowing, finger bending, and so forth. This work has important scientific significance in opening up a new strategy for the structure optimization and performance improvement of triboelectric sensors.

11.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36014639

RESUMEN

Thermo-osmotic energy conversion using waste heat is one of the approaches to harvesting sustainable energy and reducing associated environmental impacts simultaneously. In principle, ions transport through a charged nanopore membrane under the effect of a thermal gradient, inducing a different voltage between two sides of the membrane. Recent publications mainly reported novel materials for enhancing the thermoelectric voltage in response to temperature difference, the so-called Seebeck coefficient. However, the effect of the surface charge distribution along nanopores on thermo-osmotic conversion has not been discussed yet. In this paper, a numerical simulation based on the Nernst-Planck-Poisson equations, Navier-Stokes equations, and heat transfer equations is carried out to consider the effect of surface charge-regulation density and pH of KCl solutions on the Seebeck coefficient. The results show that the highest ionic Seebeck coefficient of -0.64 mV/K is obtained at 10-4 M KCl solution and pH 9. The pH level and pore structure also reveal a strong effect on the thermo-osmotic performance. Moreover, the pH level at one reservoir is varied from 5 to 9, while the pH of 5 is fixed at the other reservoir to investigate the pH effect on the thermos-osmosis ion transport. The results confirm the feasibility that using the pH can enhance the thermo-osmotic conversion for harvesting osmotic power from low-grade heat energy.

12.
Colloids Surf B Biointerfaces ; 217: 112617, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35738075

RESUMEN

We analyze the conditions of the adsorption of a flexible peptide onto a charged substrate in the 'wrong side' of the isoelectric point (WSIP), i.e. when surface and peptide charges have the same sign. As a model system, we focus on the casein macropeptide (CMP), both in the aglycosylated (aCMP) and fully glycosydated (gCMP) forms. We model the substrate as a uniformly charged plane while CMP is treated as a bead-and-spring model including electrostatic interactions, excluded volume effects and acid/base equilibria. Adsorption coverage, aminoacid charges and concentration profiles are computed by means of Monte Carlo simulations at fixed pH and salt concentration. We conclude that for different reasons the CMP can be adsorbed to both positively and negatively charged surfaces in the WSIP. For negatively charged surfaces, WSIP adsorption is due to the patchy distribution of charges: the peptide is attached to the surface by the positively charged end of the chain, while the repulsion of the surface for the negatively charged tail is screened by the small ions of the added salt. This effect increases with salt concentration. Conversely, a positively charged substrate induces strong charge regulation of the peptide: the acidic groups are deprotonated, and the peptide becomes negatively charged. This effect is stronger at low salt concentrations and it is more intense for gCMP than for aCMP, due to the presence of the additional sialic groups in gCMP.


Asunto(s)
Caseínas , Péptidos , Adsorción , Punto Isoeléctrico , Propiedades de Superficie
13.
ACS Nano ; 16(6): 9523-9534, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35616603

RESUMEN

Two-dimensional metal-organic frameworks (MOFs) have served as favorable prototypes for electrocatalytic oxygen evolution reaction (OER). Despite promising catalytic activity, their OER reaction kinetics are still limited by the sluggish four-electron transfer process. Herein, we develop a ferrocene carboxylic acid (FcCA) partially substituted cobalt-terephthalic acid (CoBDC) catalyst with a bifunctional microreactor composed of two species of Co active sites and ligand FcCA (CoBDC FcCA). Benefiting from the ultrathin nanosheet structure, CoBDC FcCA catalyst exhibits an excellent OER performance with a low overpotential of 280 mV to reach 10 mA cm-2 and a small Tafel slope of 53 mV dec-1. Structure characterization together with theoretical calculations directly unravel the coordination for two species of Co active moieties with FcCA forming a microreactor of tensile strain, leading to a conversion of the Co spin from a high spin state (t2g5eg2) to an intermediate spin state (t2g6eg1) to regulate antibonding states of Co 3d and O 2p orbital. In situ spectroscopic measurements for mechanistic understanding reveal that this CoBDC FcCA catalyst possesses an optimal OH* adsorption energy for propitious formation of O-O bonds in the OOH* intermediate, thus effectively decreasing the thermodynamic Gibbs free energy of the rate-determining step (O* → OOH*) to accelerate reaction kinetics for the whole OER process. When loaded on an integrated BiVO4 photoanode as a cocatalyst, CoBDC FcCA enables highly active solar-driven oxygen production from water splitting.

14.
J Phys Condens Matter ; 34(36)2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35366656

RESUMEN

We develop a molecular thermodynamic theory to study the interaction of some proteins with a charge regulating silica-like surface under a wide range of conditions, including pH, salt concentration and protein concentration. Proteins are modeled using their three dimensional structure from crystallographic data and the average experimental pKa of amino acid residues. As model systems, we study single-protein and binary solutions of cytochrome c, green fluorescent protein, lysozyme and myoglobin. Our results show that protonation equilibrium plays a critical role in the interactions of proteins with these type of surfaces. The terminal hydroxyl groups on the surface display considerable extent of charge regulation; protein residues with titratable side chains increase protonation according to changes in the local environment and the drop in pH near the surface. This behavior defines protein-surface interactions and leads to the emergence of several phenomena: (i) a complex non-ideal surface charge behavior; (ii) a non-monotonic adsorption of proteins as a function of pH; and (iii) the presence of two spatial regions, a protein-rich and a protein-depleted layer, that occur simultaneously at different distances from the surface when pH is slightly above the isoelectric point of the protein. In binary mixtures, protein adsorption and surface-protein interactions cannot be predicted from single-protein solution considerations.


Asunto(s)
Mioglobina , Dióxido de Silicio , Adsorción , Concentración de Iones de Hidrógeno , Dióxido de Silicio/química , Propiedades de Superficie , Termodinámica
15.
Front Chem ; 10: 852164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372273

RESUMEN

Peptide amphiphiles are a class of molecules that can self-assemble into a variety of supramolecular structures, including high-aspect-ratio nanofibers. It is challenging to model and predict the charges in these supramolecular nanofibers because the ionization state of the peptides are not fixed but liable to change due to the acid-base equilibrium that is coupled to the structural organization of the peptide amphiphile molecules. Here, we have developed a theoretical model to describe and predict the amount of charge found on self-assembled peptide amphiphiles as a function of pH and ion concentration. In particular, we computed the amount of charge of peptide amphiphiles nanofibers with the sequence C 16 - V 2 A 2 E 2. In our theoretical formulation, we consider charge regulation of the carboxylic acid groups, which involves the acid-base chemical equilibrium of the glutamic acid residues and the possibility of ion condensation. The charge regulation is coupled with the local dielectric environment by allowing for a varying dielectric constant that also includes a position-dependent electrostatic solvation energy for the charged species. We find that the charges on the glutamic acid residues of the peptide amphiphile nanofiber are much lower than the same functional group in aqueous solution. There is a strong coupling between the charging via the acid-base equilibrium and the local dielectric environment. Our model predicts a much lower degree of deprotonation for a position-dependent relative dielectric constant compared to a constant dielectric background. Furthermore, the shape and size of the electrostatic potential as well as the counterion distribution are quantitatively and qualitatively different. These results indicate that an accurate model of peptide amphiphile self-assembly must take into account charge regulation of acidic groups through acid-base equilibria and ion condensation, as well as coupling to the local dielectric environment.

16.
Adv Colloid Interface Sci ; 303: 102640, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35358806

RESUMEN

In modern-day research, nanoparticles (size < 100nm) are an indispensable tool for various applications, especially in the field of biomedicine. Although enormous efforts have been made to understand the properties and specificities of nanoparticles, many questions are still not answered and the new ones arise. In this review we summarize current trends in the nanoparticle synthesis and characterization and interpret the stability of nanoparticles in various media from aqueous solutions to biological milieu important for the in vitro and in vivo studies. To get more detailed insight into nanoparticle charging properties and interactions of nanoparticles with interfaces the theoretical models are presented. Finally, the overview of nanoparticle applications is given and the future prospects are discussed.


Asunto(s)
Nanomedicina , Nanopartículas , Sistemas de Liberación de Medicamentos
17.
Polymers (Basel) ; 14(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215653

RESUMEN

Protein adsorption onto nanomaterials is a process of vital significance and it is commonly controlled by functionalizing their surface with polymers. The efficiency of this strategy depends on the design parameters of the nanoconstruct. Although significant amount of work has been carried out on planar surfaces modified with different types of polymers, studies investigating the role of surface curvature are not as abundant. Here, we present a comprehensive and systematic study of the protein adsorption process, analyzing the effect of curvature and morphology, the grafting of polymer mixtures, the type of monomer (neutral, acidic, basic), the proteins in solution, and the conditions of the solution. The theoretical approach we employed is based on a molecular theory that allows to explicitly consider the acid-base reactions of the amino acids in the proteins and the monomers on the surface. The calculations showed that surface curvature modulates the molecular organization in space, but key variables are the bulk pH and salt concentration (in the millimolar range). When grafting the NP with acidic or basic polymers, the surface coating could disfavor or promote adsorption, depending on the solution's conditions. When NPs are in contact with protein mixtures in solution, a nontrivial competitive adsorption process is observed. The calculations reflect the balance between molecular organization and chemical state of polymers and proteins, and how it is modulated by the curvature of the underlying surface.

18.
J Colloid Interface Sci ; 613: 747-763, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066233

RESUMEN

HYPOTHESIS: We describe the deposition behavior of monodispersed silica nanoparticles on polystyrene spherical particles by using modified pairwise DLVO (Derjaguin-Landau-Verwey-Overbeek) interaction force profiles at pH values between two and twelve. Our modified model contains a new nonlinear charge regulation parameter that considers redistribution of ions, which allows us to realistically express the electrical double layer (EDL) interaction forces. EXPERIMENTS: Silanol-terminated silica nanoparticles (7.6 ± 0.4 nm), l-lysine-covered silica nanoparticles (7.8 ± 0.4 nm), and polyallylamine hydrochloride-covered polystyrene (PAH/PS) particles (348 ± 1 nm) were synthesized. Then, each type of silica nanoparticle was deposited on the PAH/PS particles at a range of pH values. FINDINGS: Our new regulation parameter describes the realistic redistribution of charges governed by pH, total salt concentration, ionic strength of solution, and separation distance of particles. We find that this regulation parameter can be roughly approximated from the absolute values of theoretically calculated surface charge density and potential distributions, as well as experimentally measured ζ-potentials. Morphological analysis using electron microscopy of the experimental systems shows that the modified pairwise DLVO interaction forces exceptionally describe the deposition behavior of the silica nanoparticles physically adsorbed on the PAH/PS particle substrates.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Iones , Concentración Osmolar , Poliestirenos
19.
J Mol Biol ; 434(5): 167405, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34914967

RESUMEN

Molecular chaperones are diverse biomacromolecules involved in the maintenance of cellular protein homeostasis (proteostasis). Here we demonstrate that in contrast to most chaperones with defined three-dimensional structures, the acid-inducible protein Asr in Escherichia coli is intrinsically disordered and exhibits varied aggregation-preventing or aggregation-promoting activities, acting as a "conditionally active chaperone". Bioinformatics and experimental analyses of Asr showed that it is devoid of hydrophobic patches but rich in positive charges and local polyproline II backbone structures. Asr contributes to the integrity of the bacterial outer membrane under mildly acidic conditions in vivo and possesses chaperone activities toward model clients in vitro. Notably, its chaperone activity is dependent on the net charges of clients: on the one hand, it inhibits the aggregation of clients with similar net charges; on the other hand, it stimulates the aggregation of clients with opposite net charges. Mutational analysis confirmed that positively charged residues in Asr are essential for the varied effects on protein aggregation, suggesting that electrostatic interactions are the major driving forces underlying Asr's proteostasis-related activity. These findings present a unique example of an intrinsically disordered molecular chaperone with distinctive dual functions-as an aggregase or as a chaperone-depending on the net charges of clients.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Intrínsecamente Desordenadas , Chaperonas Moleculares , Péptidos , Agregado de Proteínas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Chaperonas Moleculares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Pliegue de Proteína
20.
Electrophoresis ; 43(5-6): 757-766, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34398491

RESUMEN

Electrophoresis of core-shell composite soft particles possessing hydrophobic inner core grafted with highly charged polyelectrolyte layer (PEL) has been studied analytically. The PEL bears pH-dependent charge properties due to the presence of zwitterionic functional groups. The dielectric permittivity of the PEL and bulk aqueous medium were taken to be different, which resulted in the ion-partitioning effect. Objective of this study was to provide a simple expression for the mobility of such core-shell soft particles under Donnan limit where the thickness of the PEL well exceeds the electric double layer thickness. Going beyond the widely used Debye-Hückel linearization, the nonlinear Poisson-Boltzmann equation coupled with Stokes-Darcy-Brinkman equations was solved to determine the electrophoretic mobility. The derived expression further recovers all the existing results for the electrophoretic mobility under various simplified cases. The graphical presentation of the results illustrated the impact of pertinent parameters on the electrophoretic mobility of such a soft particle.


Asunto(s)
Electrólitos , Electrólitos/química , Electroforesis/métodos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Polielectrolitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA