Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cancer Manag Res ; 16: 1109-1130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253064

RESUMEN

Purpose: This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and experimental strategies. Patients and Methods: The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR. Results: In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC-related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the expression of key CICRGs was validated by qPCR using clinical samples from GBM patients. Conclusion: We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.

2.
Cell ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39096902

RESUMEN

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.

3.
Free Neuropathol ; 52024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39139503

RESUMEN

We describe a case of a young patient with a recurrent pleomorphic xanthoastrocytoma (PXA) showing unusual cell-in-cell (CiC) phenomena. We observed mostly viable but also necrotic neutrophils engulfed within tumor cells. The recurrent tumor was immunopositive for BRAFV600E mutant protein and showed CDKN2 homozygous deletions typical of PXA. Both genetic alterations were also reported in the original primary tumor. Unlike the original tumor that was GFAP and Olig-2 immunopositive, the recurrent neoplasm was largely negative for GFAP and Olig-2 suggesting dedifferentiation. The large malignant cells that contained the neutrophils were negative for histiocytic and lymphohematopoietic markers. Whereas CDKN2 homozygous deletion is common in PXA, its presence is rare in histiocytic neoplasms. Both reactive astrocytes and glial neoplasms very rarely may engulf neutrophils in a process resembling emperipolesis or cellular cannibalism. Future work may clarify which type of CiC pathway is involved.

4.
Sci Rep ; 14(1): 18952, 2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147858

RESUMEN

Homotypic cell-in-cell structures (hoCICs) are associated with tumor proliferation, invasion, and metastasis and is considered a promising prognostic marker in various cancers. However, the role of hoCICs in non-small cell lung cancer (NSCLC) remains unclear. Tumor tissue sections were obtained from 411 NSCLC patients. We analyzed the relationship between clinicopathological variables and the number of hoCICs. LASSO and multivariate Cox regression analysis were employed to identify prognostic factors for NSCLC. The impact of hoCICs on overall survival (OS) and disease-free survival (DFS) was assessed using the Kaplan-Meier curves and log-rank test. Prognostic models for OS and DFS were developed and validated using the C-index, time-dependent area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curves and decision curve analysis (DCA). Among the cohort, 56% of patients had hoCICs while 44% did not. Notably, hoCICs were primarily found at the tumor invasion front. Male gender, smoking, squamous cell carcinoma, low differentiation, tumor size ≥ 3 cm, advanced TNM stage, lymph node metastasis, pleural invasion, vascular invasion, necrosis, P53 mutation, and high expression of Ki-67 were identified as relative risk factors for hoCICs. Furthermore, hoCICs was found to be a significant prognostic factor for both OS and DFS, with higher frequencies of hoCICs correlating with poorer outcomes. We constructed nomograms for predicting 1-, 3-, and 5-year OS and DFS based on hoCICs, and the calibration curves showed good agreement between the predicted and actual outcomes. The results of the C-index, time-dependent AUC, NRI, IDI, and DCA analyses demonstrated that incorporating hoCICs into the prognostic model significantly enhanced its predictive power and clinical applicability. HoCICs indicated independent perdictive value for OS and DFS in patients with NSCLC. Furthermore, the frequent localization of hoCICs at the tumor invasion front suggested a strong association between hoCICs and tumor invasion as well as metastasis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Invasividad Neoplásica , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Masculino , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Persona de Mediana Edad , Pronóstico , Anciano , Estimación de Kaplan-Meier , Adulto , Supervivencia sin Enfermedad , Estadificación de Neoplasias , Biomarcadores de Tumor/metabolismo
5.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2223-2234, 2024 Jul 25.
Artículo en Chino | MEDLINE | ID: mdl-39044586

RESUMEN

Heterotypic cell-in-cell (heCIC) structures represent a unique intercellular interaction where tumor cells internalize immune cells to enhance the killing efficiency of immune cells. However, the mechanism of heCIC structure formation remains to be fully elucidated. In this study, we explored the role of epithelial membrane protein 3 (EMP3), a PMP-22/EMP/MP20 protein family member highly expressed in the patients with hepatocellular carcinoma and poor prognosis, in the formation of the heCIC structure formed by natural killer cells and hepatocellular carcinoma cells. The analysis of monoclonal hepatocellular carcinoma cell lines revealed that EMP3 presented low expression in the cells with high capability to form heCIC structure and high expression in those with low capability. Knocking down the expression of EMP3 by gene editing promoted the formation of heCIC structures, while overexpression of EMP3 significantly inhibited this process. Additionally, the expression of factors involved in the heCIC structure formation suggested that EMP3 inhibited the formation of heCIC structures by modulating the adhesion ability and cytoskeleton of tumor cells. The findings lay a foundation for enhancing the heCIC-mediated tumor immunotherapy by targeting EMP3.


Asunto(s)
Carcinoma Hepatocelular , Adhesión Celular , Células Asesinas Naturales , Neoplasias Hepáticas , Glicoproteínas de Membrana , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Comunicación Celular/inmunología , Células Asesinas Naturales/inmunología , Línea Celular Tumoral , Adhesión Celular/inmunología , Citoesqueleto/inmunología , Inmunoterapia , Humanos , Técnicas de Silenciamiento del Gen , Edición Génica
6.
Immunology ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078223

RESUMEN

Despite breakthroughs of immunotherapy synergistically combined with blockade of vascular endothelial growth factor receptor, several patients with advanced non-small cell lung cancer (NSCLC) experience non-response or followed relapse. Organized lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are found to be associated with improved response to immunotherapy. Here, we explore the landscapes of TLSs in tumour tissues from a real-world retrospective study. Our investigation showed that with a median follow-up of 11.2 months, the ORR was 28.6% (18/63, 95% CI 17.9-41.3) and the median PFS was 6.1 (95% CI 5.5-6.6) months in NSCLC patients treated with PD-1 blockade combined with anlotinib. By multiplex immunofluorescence (mIF) analysis, spatially, more TLSs and high CD20+ B-cell ratio in TLSs were associated with higher ORR. High density of intratumoral CD8+ T cells showed better ORR and PFS. The numbers of CD8+ T cells with a distance within 20 µm and 20-50 µm between tumour cells were higher in responders than non-responders. But responders had significantly higher TLSs within 20 µm rather than within 20-50 µm of tumour cells than non-responders. The inflamed immunophenotyping occupied higher proportions in responders and was associated with better PFS. Besides, tumour cells in non-responders were found more temporal cell-in-cell structures than responders, which could protect inner cells from T-cell attacks. Taken together, landscape of TLSs and proximity architecture may imply superior responses to PD-1 blockade combined with anlotinib for patients with advanced non-small cell lung cancer.

7.
Biochem Cell Biol ; 102(3): 262-274, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567768

RESUMEN

Cell-in-cell (CIC) structures have been suggested to mediate intracellular substance transport between cells and have been found widely in inflammatory lung tissue of asthma. The aim of this study was to investigate the significance of CIC structures in inflammatory progress of asthma. CIC structures and related inflammatory pathways were analyzed in asthmatic lung tissue and normal lung tissue of mouse model. In vitro, the activation of inflammatory pathways by CIC-mediated intercellular communication was analyzed by RNA-Seq and verified by Western blotting and immunofluorescence. Results showed that CIC structures of lymphocytes and alveolar epithelial cells in asthmatic lung tissue mediated intercellular substance (such as mitochondria) transfer and promoted pro-inflammation in two phases. At early phase, internal lymphocytes triggered inflammasome-dependent pro-inflammation and cell death of itself. Then, degraded lymphocytes released cellular contents such as mitochondria inside alveolar epithelial cells, further activated multi-pattern-recognition receptors and NF-kappa B signaling pathways of alveolar epithelial cells, and thereby amplified pro-inflammatory response in asthma. Our work supplements the mechanism of asthma pro-inflammation progression from the perspective of CIC structure of lymphocytes and alveolar epithelial cells, and provides a new idea for anti-inflammatory therapy of asthma.


Asunto(s)
Asma , Comunicación Celular , Inflamación , Asma/metabolismo , Asma/patología , Animales , Ratones , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos BALB C , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Linfocitos/metabolismo , Linfocitos/patología , Modelos Animales de Enfermedad , Humanos , Transducción de Señal , Progresión de la Enfermedad
8.
Thorac Cancer ; 15(7): 513-518, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38258402

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is characterized by the loss of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. The aggressive clinicopathological features and resistance to currently available therapeutics of the disease warrant an urgent need for the development of novel alternate therapeutic options. We have previously reported adiponectin-expressing regulatory T cells (A-Tregs), which can induce apoptosis in TNBC through the cell-in-cell phenomenon. In this study, we aimed to elucidate the molecule that allows TNBC cells to engulf A-Tregs. METHODS: A monoclonal antibody, which repressed the engulfment of A-Tregs by TNBC cells, was developed. Immunoprecipitation followed by mass spectrometry and small interfering RNAs-mediated gene silencing was performed to characterize the antigen. RESULTS: We successfully generated a monoclonal antibody, designated G1D7, which abrogated the engulfment of A-Tregs by TNBC and subsequent A-Treg-mediated apoptosis. G1D7 detected the immunoglobulin-like type I membrane protein IZUMO2, a molecule related to IZUMO1 that is essential for cell-cell membrane binding and fusion of sperm to oocyte. CONCLUSION: The findings highlight the importance of IZUMO2 on TNBC cells in facilitating the cell-in-cell phenomenon by A-Tregs.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Masculino , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Semen/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Apoptosis , Receptores de Estrógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular
9.
Biosensors (Basel) ; 13(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37998148

RESUMEN

Wild-type p53 cancer therapy-induced senescent cells frequently engulf and degrade neighboring ones inside a massive vacuole in their cytoplasm. After clearance of the internalized cell, the vacuole persists, seemingly empty, for several hours. Despite large vacuoles being associated with cell death, this process is known to confer a survival advantage to cancer engulfing cells, leading to therapy resistance and tumor relapse. Previous attempts to resolve the vacuolar structure and visualize their content using dyes were unsatisfying for lack of known targets and ineffective dye penetration and/or retention. Here, we overcame this problem by applying optical diffraction tomography and Raman spectroscopy to MCF7 doxorubicin-induced engulfing cells. We demonstrated a real ability of cell tomography and Raman to phenotype complex microstructures, such as cell-in-cells and vacuoles, and detect chemical species in extremely low concentrations within live cells in a completely label-free fashion. We show that vacuoles had a density indistinguishable to the medium, but were not empty, instead contained diluted cell-derived macromolecules, and we could discern vacuoles from medium and cells using their Raman fingerprint. Our approach is useful for the noninvasive investigation of senescent engulfing (and other peculiar) cells in unperturbed conditions, crucial for a better understanding of complex biological processes.


Asunto(s)
Neoplasias , Vacuolas , Humanos , Vacuolas/fisiología , Citoplasma , Doxorrubicina , Microscopía Confocal , Tomografía
10.
Diagn Pathol ; 18(1): 126, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017544

RESUMEN

BACKGROUND: Overlapping morphological features of mesothelial cells have been rendered it difficult to distinguish between reactive and malignant conditions. The development of methods based on detecting genomic abnormalities using immunohistochemistry and fluorescence in situ hybridization have contributed markedly to solving this problem. It is important to identify bland mesothelioma cells on cytological screening, perform efficient genomic-based testing, and diagnose mesothelioma, because the first clinical manifestation of pleural mesothelioma is pleural effusion, which is the first sample available for pathological diagnosis. However, certain diagnostic aspects remain challenging even for experts. CASE PRESENTATION: This report describes a case of a 72-year-old man with a history of asbestos exposure who presented with pleural effusion as the first symptom and was eventually diagnosed as mesothelioma. Mesothelioma was suspected owing to prominent cell-in-cell engulfment in mesothelial cells on the first cytological sample, and the diagnosis of mesothelioma in situ was confirmed by histology. Unexpectedly, sarcomatoid morphology of mesothelioma was found in the second pathology samples 9 months after the first pathological examination. Both the mesothelioma in situ and invasive lesion showed immunohistochemical loss of methylthioadenosine phosphorylase (MTAP) and homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A) on fluorescence in situ hybridization. The patient received medication therapy but died of disease progression 12 months after the diagnosis of the sarcomatoid morphology of mesothelioma. CONCLUSION: Our case suggests that cell-in-cell engulfment can be conspicuous in early-stage mesothelioma with inconspicuous nuclear atypia and few multinucleated cells. In addition, the presence of MTAP loss and CDKN2A homozygous deletion are suspected to be involved in early formation to invasive lesions and/or sarcomatoid morphology. We believe that it is important to consider genetic abnormalities when deciding on individual patient management. Furthermore, cases of mesothelioma, even those of an in situ lesion, with MTAP loss and/or CDKN2A deletion should be carefully followed up or subjected to early treatment.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Derrame Pleural , Neoplasias Pleurales , Sarcoma , Masculino , Humanos , Anciano , Hibridación Fluorescente in Situ , Homocigoto , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Eliminación de Secuencia , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/patología , Neoplasias Pleurales/diagnóstico , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Derrame Pleural/genética , Sarcoma/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Ubiquitina Tiolesterasa/análisis , Ubiquitina Tiolesterasa/genética
11.
Front Oncol ; 13: 1248097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790755

RESUMEN

One of the regulated forms of cell death is the cell-in-cell (CIC) structure, in which a surviving cell is engulfed by another cell, a mechanism that causes the death of the engulfed cell by an adjacent cell. Several investigators have previously shown that the presence of CICs is an independent risk factor significantly associated with decreased survival in patients with various types of cancer. In this review, we summarize the role of CIC in the tumor microenvironment (TME), including changes and crosstalk of molecules and proteins in the surrounding CIC, and the role of these factors in contributing to therapeutic resistance acquisition. Moreover, CIC structure formation is influenced by the modulation of TME, which may lead to changes in cellular properties. Future use of CIC as a clinical diagnostic tool will require a better understanding of the effects of chemotherapy on CIC, biomarkers for each CIC formation process, and the development of automated CIC detection methods in tissue sections of tumor specimens.

12.
Cells ; 12(19)2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37830632

RESUMEN

Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/patología , Reproducibilidad de los Resultados , Microambiente Tumoral
13.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4123-4134, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37877395

RESUMEN

Heterotypic cell-in-cell structures (heCICs) are closely related to tumor development and progression, and have become a new frontier in life science research. Ras-related C3 botulinum toxin substrate 1 (Rac1) belongs to the classic Rho GTPase, which plays a key role in regulating the cytoskeleton and cell movement. To investigate the role and mechanism of Rac1 in the formation of heCICs, tumor cells and immune killer cells were labeled with cell-tracker, respectively, to establish the heCICs model. Upon treatment with the Rac1 inhibitor NSC23766, the formation of heCICs between tumor and immune cells was significantly reduced. The plasmid pQCXIP-Rac1-EGFP constructed by gene cloning was packaged into pseudoviruses that subsequently infect tumor cells to make cell lines stably expressing Rac1. As a result, the formation of heCICs was significantly increased upon Rac1 overexpression. These results demonstrated a promotive role of Rac1 in heCICs formation, which may facilitate treating cell-in-cell related diseases, such as tumors, by targeting Rac1.

14.
Thorac Cancer ; 14(30): 3058-3062, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37674354

RESUMEN

BACKGROUND: In our previous study, we identified a population of adiponectin expressing regulatory T cells (Tregs) residing within thymic nurse cell complexes, which were capable of inhibiting the development of breast cancer in vitro. Triple-negative breast cancer (TNBC) with no proper treatment at present is characterized by the absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2. In this study, we aimed to investigate the potential of a cultured T cell fraction comprising adiponectin-expressing Tregs, referred to as A-TregTF (adiponectin-expressing Treg-containing T cell fraction), in inhibiting the progression of TNBC in vivo. METHODS: The efficacy of a spontaneously expanding T cell fraction comprising adiponectin-expressing Treg in inhibiting tumor growth was analyzed in a murine orthotopic 4 T1-Luc TNBC model. RESULTS: The treatment with T cell fraction containing adiponectin-expressing Tregs significantly inhibited the growth and metastasis of orthotopically transplanted 4 T1-Luc tumor cells. Histopathological examination further revealed that the adiponectin-expressing Tregs infiltrated the tumor tissue via a cell-in-cell mechanism and were found to be specifically localized around the necrotic areas. CONCLUSIONS: Based on our findings, the T cell fraction comprising adiponectin-expressing Tregs, represents a potential candidate for adoptive cell therapy against TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Adiponectina/metabolismo , Linfocitos T Reguladores , Línea Celular Tumoral
15.
Acta Histochem ; 125(7): 152091, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657202

RESUMEN

Central giant cell granuloma (CGCG) is a benign jaw lesion with variable clinical behavior. Cell cannibalism is a cellular process associated with aggressiveness and invasion in malignant neoplasms. Here, we morphologically investigated cell cannibalism as an auxiliary method to predict CGCG clinical behavior. Cell cannibalism was quantitatively evaluated in 19 cases of peripheral giant cell granuloma (PGCG), 38 cases of CGCG (non-aggressive and aggressive), and 19 cases of giant cell tumor of bone (GCT) stained with hematoxylin and eosin. T-test was performed to assess the differences between the variables analyzed (p ≤ 0.05). Cell cannibalism was identified in 21% of non-aggressive CGCGs and 68.4% of aggressive CGCGs. A significantly higher amount of cannibal multinucleated giant cells (CMGC) was observed in aggressive CGCG compared to PGCG and non-aggressive CGCG (p = 0.042; p = 0.044, respectively). There were no significant differences in the CMGC index between non-aggressive CGCG and PGCG (p = 0.858) and between aggressive CGCG and GCT (p = 0.069). CGGC cases that exhibited rapid growth and tooth displacement and/or root resorption had a higher amount of CMGC (p = 0.035; p = 0.041, respectively). Cell cannibalism can be identified in CGCG through routine anatomopathological examination. The quantification of CMGC can help to predict the clinical behavior of central giant cell granuloma.

16.
Curr Oncol ; 30(8): 7542-7552, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37623028

RESUMEN

Non-professional phagocytosis in cancer has been increasingly studied in recent decades. In malignant melanoma metastasis, cell-in-cell structures have been described as a sign of cell cannibalism. To date, only low rates of cell-in-cell structures have been described in patients with malignant melanoma. To investigate these findings further, we examined twelve primary melanoma cell lines in both adherent and suspended co-incubation for evidence of engulfment. In addition, 88 malignant melanoma biopsies and 16 healthy tissue samples were evaluated. E-cadherin levels were determined in the cell lines and tissues. All primary melanoma cell lines were capable of phagocytosis, and phagocytosis increased when cells were in suspension during co-incubation. Cell-in-cell structures were also detected in most of the tissue samples. Early T stages and increasingly advanced N and M stages have correspondingly lower rates of cell-in-cell structures. Non-professional phagocytosis was also present in normal skin tissue. Non-professional phagocytosis appears to be a ubiquitous mechanism in malignant melanoma. The absence of phagocytosis in metastases may be one reason for the high rate of metastasis in malignant melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Fagocitosis , Cadherinas , Melanoma Cutáneo Maligno
17.
Front Oncol ; 13: 1242725, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637068

RESUMEN

The cell-in-cell (CIC) phenomenon has received increasing attention over recent years because of its wide existence in multiple cancer tissues. The mechanism of CIC formation is considerably complex as it involves interactions between two cells. Although the molecular mechanisms of CIC formation have been extensively investigated, the process of CIC formation remains ambiguous. Currently, CIC is classified into four subtypes based on different cell types and inducing factors, and the underlying mechanisms for each subtype are distinct. Here, we investigated the subtypes of CIC and their major mechanisms involved in cancer development. To determine the clinical significance of CIC, we reviewed several clinical studies on CIC and found that CIC could serve as a diagnostic and prognostic biomarker. The implications of CIC on the clinical management of cancers also remain largely unknown. To clarify this aspect, in the present review, we highlight the findings of recent investigations on the causal link between CIC and cancer treatment. We also indicate the existing issues that need to be resolved urgently to provide a potential direction for future research on CIC.

18.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569518

RESUMEN

Homotypic entosis is a phenomenon in which one cancer cell invades a neighboring cancer cell and is closed entirely within its entotic vacuole. The fate of entosis can lead to inner cell death or survival. Recent evidence draws attention to entosis as a novel prognostic marker in breast cancer. Nevertheless, little is known about the quantity and quality of the process of entosis in human cancer specimens. Here, for the first time, we analyze the frequency of entotic figures in a case of NOS (Non-Other Specified) breast cancer with regard to location: the primary tumor, regional lymph node, and distant metastasis. For the identification of entotic figures, cells were stained using hematoxylin/eosin and assessed using criteria proposed by Mackay. The majority of entotic figures (65%) were found in the lymph node, 27% were found in the primary tumor, and 8% were found in the far metastasis. In the far metastases, entotic figures demonstrated an altered, atypic morphology. Interestingly, in all locations, entosis did not show any signs of cell death. Moreover, the slides were stained for E-cadherin or Ki67, and we identified proliferating (Ki67-positive) inner and outer entotic cells. Therefore, we propose additional criteria for the identification of pro-survival entotic structures in diagnostic histopathology.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Entosis/fisiología , Antígeno Ki-67 , Muerte Celular
19.
J Pers Med ; 13(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511762

RESUMEN

This review summarizes information about cell-in-cell (CIC) structures with a focus on gastrointestinal tumors. The phenomenon when one cell lives in another one has attracted an attention of researchers over the past decades. We briefly discuss types of CIC structures and mechanisms of its formation, as well as the biological basis and consequences of the cell-engulfing process. Numerous clinico-histopathological studies demonstrate the significance of these structures as prognostic factors, mainly correlated with negative prognosis. The presence of CIC structures has been identified in all gastrointestinal tumors. However, the majority of studies concern pancreatic cancer. In this field, in addition to the assessment of the prognostic markers, the attempts to manipulate the ability of cells to form CISs have been done in order to stimulate the death of the inner cell. Number of CIC structures also correlates with genetic features for some gastrointestinal tu-mors. The role of CIC structures in the responses of tumors to therapies, both chemotherapy and immunotherapy, seems to be the most poorly studied. However, there is some evidence of involvement of CIC structures in treatment failure. Here, we summarized the current literature on CIC structures in cancer with a focus on gastrointestinal tumors and specified future perspectives for investigation.

20.
Exp Cell Res ; 429(2): 113665, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236579

RESUMEN

Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Mitocondrias/metabolismo , Glucosa/metabolismo , Antígeno B7-H1 , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA