Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nano Lett ; 24(28): 8702-8708, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38953472

RESUMEN

Quasi-2D perovskites based blue light-emitting diodes (LEDs) suffer from its poor electroluminescence performance, mainly caused by the nonradiative recombination in in defect-rich low-n phases and the unbalanced hole-electron injection in the device. Here, we developed a highly efficient quasi-2D perovskite based sky-blue LEDs behaving recorded external quantum efficiency (EQE) of 21.07% by employing carbon dots (CDs) as additives in the hole transport layer (HTL). We ascribe the high EQE to the effective engineering of CDs: (1) The CDs at the interface of HTLs can suppress the formation of low-efficient n = 1 phase, resulting a high luminescence quantum yield and energy transfer efficiency of the mixed n-phase quasi-2D perovskites. (2) The CDs additives can reduce the conductivity of HTL, partially blocking the hole injection, and thus making more balanced hole-electron injection. The CDs-treated devices have excellent Spectral stability and enhanced operational stability and could be a new alternative additive in the perovskite optoelectronic devices.

2.
Chempluschem ; 89(6): e202300650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308611

RESUMEN

As a new organic photocatalyst, polymeric carbon nitride (CN) has shown good application potential in the field of photoelectrochemistry due to its unique physical and chemical properties, but its application has been seriously hindered due to its inherent characteristics such as the difficulty in charge separation. In this study, FeOOH modified CN photoanode (CN-Fe) was constructed to investigate the effect of the cocatalyst on the charge injection capacity of organic semiconductor photoelectrodes. The experimental results demonstrate significant improvement in the charge injection efficiency of the photoanode due to the introduction of FeOOH cocatalyst, leading to enhanced photoelectrochemical performance with approximately 2.4 times increase in photocurrent density. By thoroughly investigating the mechanism behind the loading of FeOOH on the polymeric carbon nitride photoanode, we gained profound insights into the behavior of charge carriers and reaction kinetics during the photoelectrocatalytic process.

3.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766015

RESUMEN

In this work, the degradation of the random telegraph noise (RTN) and the threshold voltage (Vt) shift of an 8.3Mpixel stacked CMOS image sensor (CIS) under hot carrier injection (HCI) stress are investigated. We report for the first time the significant statistical differences between these two device aging phenomena. The Vt shift is relatively uniform among all the devices and gradually evolves over time. By contrast, the RTN degradation is evidently abrupt and random in nature and only happens to a small percentage of devices. The generation of new RTN traps by HCI during times of stress is demonstrated both statistically and on the individual device level. An improved method is developed to identify RTN devices with degenerate amplitude histograms.

4.
Adv Mater ; 35(31): e2208054, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36808659

RESUMEN

2D monolayer transition metal dichalcogenides (TMDCs) show great promise for the development of next-generation light-emitting devices owing to their unique electronic and optoelectronic properties. The dangling-bond-free surface and direct-bandgap structure of monolayer TMDCs allow for near-unity photoluminescence quantum efficiencies. The excellent mechanical and optical characteristics of 2D TMDCs offer great potential to fabricate TMDC-based light-emitting diodes (LEDs) featuring good flexibility and transparency. Great progress has been made in the fabrication of bright and efficient LEDs with varying device structures. In this review, the aim is to provide a comprehensive summary of the state-of-the-art progress made in the construction of bright and efficient LEDs based on 2D TMDCs. After a brief introduction to the research background, the preparation of 2D TMDCs used for LEDs is briefly discussed. The requirements and the corresponding challenges to achieve bright and efficient LEDs based on 2D TMDCs are introduced. Thereafter, various strategies to enhance the brightness of monolayer 2D TMDCs are described. Following that, the carrier-injection schemes enabling bright and efficient TMDC-based LEDs along with the device performance are summarized. Finally, the challenges and future prospects regarding the accomplishment of TMDC-LEDs with ultimate brightness and efficiency are discussed.

5.
Adv Sci (Weinh) ; 9(36): e2203455, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36354191

RESUMEN

When a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe2 /PtSe2 homostructure film, i.e., an extra in-plane Seebeck voltage is produced by wet-transfer stacking at the interface between the PtSe2 layers under a transverse temperature gradient is reported. This abnormal Seebeck effect is referred to as the interfacial Seebeck effect in stacked PtSe2 /PtSe2 homostructures. This effect is attributed to the carrier-interface interaction, and has independent characteristics in relation to carrier concentration. It is confirmed that the in-plane Seebeck coefficient increases as the number of stacked PtSe2 layers increase and observed a high Seebeck coefficient exceeding ≈188 µV K-1 at 300 K in a four-layer-stacked PtSe2 /PtSe2 homostructure.

6.
ACS Nano ; 16(10): 17080-17086, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36223602

RESUMEN

Metal-semiconductor interfaces are ubiquitous in modern electronics. These quantum-confined interfaces allow for the formation of atomically thin polarizable metals and feature rich optical and optoelectronic phenomena, including plasmon-induced hot-electron transfer from metal to semiconductors. Here, we report on the metal-semiconductor interface formed during the intercalation of zero-valent atomic layers of tin (Sn) between layers of MoS2, a van der Waals layered material. We demonstrate that Sn interaction leads to the emergence of gap states within the MoS2 band gap and to corresponding plasmonic features between 1 and 2 eV (0.6-1.2 µm). The observed stimulation of the photoconductivity, as well as the extension of the spectral response from the visible regime toward the mid-infrared suggests that hot-carrier generation and internal photoemission take place.

7.
Adv Sci (Weinh) ; 9(27): e2202408, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35780486

RESUMEN

Perovskite light-emitting diodes (LEDs) are emerging light sources for next-generation lighting and display technologies; however, their development is greatly plagued by difficulty in achieving yellow electroluminescence, environmental instability, and lead toxicity. Copper halide CsCu2 I3 with intrinsic yellow emission emerges as a highly promising candidate for eco-friendly LEDs, but the electroluminescent performance is limited by defect-related nonradiative losses and inefficient charge transport/injection. To solve these issues, a hole-transporting poly(9-vinlycarbazole) (PVK)-incorporated engineering into CsCu2 I3 emitter is proposed. PVK with carbazole groups is permeated at the grain boundaries of CsCu2 I3 films by interacting with the uncoordinated Cu+ , reducing the CuCs and CuI antisite defects to increase the radiative recombination and enhancing the hole mobility to balance the charge transport/injection, resulting in substantially enhanced device performances. Eventually, the yellow LEDs exhibit an 8.5-fold enhancement of external quantum efficiency, and the half-lifetime reaches 14.6 h, representing the most stable yellow LEDs based on perovskite systems reported so far.

8.
ACS Appl Mater Interfaces ; 14(28): 32625-32633, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35816728

RESUMEN

The electron-phonon interaction at the interface between topological insulator (TI), namely, Bi2Se3 and Bi2Te3 two-dimensional (2D) nanoflakes, to a gold substrate as a function of TI flake thickness is studied by means of Raman scattering. We reveal the presence of interface-enhanced Raman scattering and a strong phonon renormalization induced by carriers injected from the gold substrate to the topological surface in contact. We derive the change of the electron-phonon coupling showing a nearly linear behavior as a function of layer thickness. The strongly nonlinear change of the Raman scattering cross section as a function of flake thickness can be associated with band bending effects at the metal-TI interface. Our results provide spectroscopic evidence for a strongly modified band structure in the first few quintuple layers of Bi2Se3 and Bi2Te3 in contact with gold.

9.
ACS Appl Mater Interfaces ; 14(22): 25812-25823, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616595

RESUMEN

Lead sulfide colloidal quantum dots (PbS CQDs) have shown great potential in photodetectors owing to their promising optical properties, especially their strong and tunable absorption. However, the limitation of the specific detectivity (D*) in CQD near-infrared (NIR) photodetectors remains unknown due to the ambiguous noise analysis. Therefore, a clear understanding of the noise current is critically demanded. Here, we elucidate that the noise current is the predominant factor limiting D*, and the noise is highly dependent on the trap densities in halide-passivated PbS films and the carriers injected from the Schottky contact (EDT-passivated PbS films/metal). It is found that the thickness of CQDs is proportional to their interface trap density, while it is inversely proportional to their minimal bulk trap density. A balance point can be reached at a certain thickness (136 nm) to minimize the trap density, giving rise to the improvement of D*. Utilizing thicker PbS-EDT films broadens the width of the tunneling barrier and thereby reduces the carrier injection, contributing to a further enhancement of D*. The limiting factors of D* determined in this work not only explain the physical mechanism of the influence on detection sensitivity but also give guidance to the design of high-performance CQD photodetectors.

10.
Nanomaterials (Basel) ; 12(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35335727

RESUMEN

Non-electrical contact and non-carrier injection (NEC&NCI) mode is an emerging driving mode for nanoscale light-emitting diodes (LEDs), aiming for applications in nano-pixel light-emitting displays (NLEDs). However, the working mechanism of nano-LED operating in NEC&NCI mode is not clear yet. In particular, the questions comes down to how the inherent holes and electrons in the LED can support sufficient radiation recombination, which lacks a direct physical picture. In this work, a finite element simulation was used to study the working process of the nano-LED operating in the NEC&NCI mode to explore the working mechanisms. The energy band variation, carrier concentration redistribution, emission rate, emission spectrum, and current-voltage characteristics are studied. Moreover, the effect of the thickness of insulating layer that plays a key role on device performance is demonstrated. We believe this work can provide simulation guidance for a follow-up study of NEC&NCI-LED.

11.
ACS Nano ; 16(2): 3404-3416, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35133142

RESUMEN

The Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe2/PtSe2 van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect. By exploiting this effect by directly attaching multilayered PtSe2 over high-resistance PtSe2 thin films as a hybridized single structure, we obtained the highly challenging in-plane Seebeck coefficient of the PtSe2 films that exhibit extremely high resistances. This direct attachment further enhanced the in-plane thermal Seebeck coefficients of the PtSe2/PtSe2 van der Waals homostructure on sapphire substrates. Consequently, we successfully enhanced the in-plane Seebeck coefficients for the PtSe2 (10 nm)/PtSe2 (2 nm) homostructure approximately 42% compared to that of a pure PtSe2 (10 nm) layer at 300 K. These findings represent a significant achievement in understanding the interface-induced Seebeck effect and provide an effective strategy for promising large-area thermoelectric energy harvesting devices using two-dimensional transition metal dichalcogenide materials, which are ideal thermoelectric platforms with high figures of merit.

12.
Micromachines (Basel) ; 13(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35056288

RESUMEN

Device guidelines for reducing power with punch-through current annealing in gate-all-around (GAA) FETs were investigated based on three-dimensional (3D) simulations. We studied and compared how different geometric dimensions and materials of GAA FETs impact heat management when down-scaling. In order to maximize power efficiency during electro-thermal annealing (ETA), applying gate module engineering was more suitable than engineering the isolation or source drain modules.

13.
Nanotechnology ; 33(7)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34736241

RESUMEN

Understanding the mechanism of the negative differential resistance (NDR) in transition metal dichalcogenides is essential for fundamental science and the development of electronic devices. Here, the NDR of the current-voltage characteristics was observed based on the glutamine-functionalized WS2quantum dots (QDs). The NDR effect can be adjusted by varying the applied voltage range, air pressure, surrounding gases, and relative humidity. A peak-to-valley current ratio as high as 6.3 has been achieved at room temperature. Carrier trapping induced by water molecules was suggested to be responsible for the mechanism of the NDR in the glutamine-functionalized WS2QDs. Investigating the NDR of WS2QDs may promote the development of memory applications and emerging devices.

14.
ACS Appl Mater Interfaces ; 13(48): 57560-57566, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812603

RESUMEN

Precisely tuning emission spectra through the component control of mixed halides has been proved to be an efficient method for procuring deep-blue perovskite LEDs (PeLEDs). However, the inferior color instability and lifetime attenuation, originated from vacancy- and trap-mediated mechanisms under an external field, remain an uninterruptedly formidable challenge for the commercial development of PeLEDs. Here, an ultrafast thermodynamics-induced injection enhancement strategy was employed to promote efficient carrier recombination within perovskite quantum dots (QDs), accompanied by less inefficient charge accumulation and trap generation, enabling deep-blue PeLEDs with improved thermal and spectral stability. The resultant PeLEDs feature an external quantum efficiency (EQE) of 3.66%, a max luminance of 2100 cd/m2 at the electroluminescence (EL) of 460 nm, and a halftime of 288 s. This work provides a general platform for promoting the EL performances and a deep insight into unraveling the degradation mechanism of blue PeLEDs.

15.
Adv Mater ; 33(34): e2101374, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34288156

RESUMEN

The organic insulator-metal interface is the most important junction in flexible electronics. The strong band offset of organic insulators over the Fermi level of electrodes should theoretically impart a sufficient impediment for charge injection known as the Schottky barrier. However, defect formation through Anderson localization due to topological disorder in polymers leads to reduced barriers and hence cumbersome devices. A facile nanocoating comprising hundreds of highly oriented organic/inorganic alternating nanolayers is self-coassembled on the surface of polymer films to revive the Schottky barrier. Carrier injection over the enhanced barrier is further shunted by anisotropic 2D conduction. This new interface engineering strategy allows a significant elevation of the operating field for organic insulators by 45% and a 7× improvement in discharge efficiency for Kapton at 150 °C. This superior 2D nanocoating thus provides a defect-tolerant approach for effective reviving of the Schottky barrier, one century after its discovery, broadly applicable for flexible electronics.

16.
Adv Mater ; 33(17): e2005389, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33733537

RESUMEN

Photoelectrochemical (PEC) water oxidation based on semiconductor materials plays an important role in the production of clean fuel and value-added chemicals. Nanostructure-interface engineering has proven to be an effective way to construct highly efficient PEC water oxidation photoanodes with good light capture, carrier transport, and water oxidation kinetics. However, from theoretical and application perspectives, the relationship between the nanostructure and interface of photoanode materials and their PEC performance remains unclear. In this review, the PEC water oxidation reaction mechanism and evaluation criteria are briefly presented. The theoretical basis and research status of the nanostructure-interface engineering on constructing high-performance PEC water oxidation photoanodes are summarized and discussed. Finally, the current challenges and the future opportunities of nanostructure-interface engineering for the PEC reactions are pointed out.

17.
Angew Chem Int Ed Engl ; 60(22): 12532-12538, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33734534

RESUMEN

Here, we demonstrate the simultaneous utilization of both the hot carriers (electrons and holes) in the photocatalytic transformation of benzylamine to N-benzylidenebenzylamine and the scope of reaction has also been successfully demonstrated with catalytic oxidation of 4-methoxybenzylamine. The wavelength-dependent excitation of AuNP allows us to tune the potential energy of charge carriers relative to the redox potential of the reactants which leads to energetically favorable product formation on the nanoparticle surface. We capture the formation of reaction intermediates and products by using in situ Raman spectroscopy, complemented by NMR spectroscopy and GC-MS. Based on the experimental substantiations, a plausible reaction mechanism has been proposed.

18.
ACS Appl Mater Interfaces ; 13(2): 2829-2835, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33410320

RESUMEN

Hot carrier injection (HCI), occurring when the horizontal electric field is strongly applied, usually affects the degradation of nanoelectronic devices. In addition, metal contacts play a significant role in nanoelectronic devices. In this study, Schottky contacts in multilayer tungsten diselenide (WSe2) field-effect transistors (FETs) by hot carrier injection (HCI), occurring when a high drain voltage is applied, is investigated. A small number of hot carriers with high energy reduces the Schottky barrier height and improves the performance of FETs effectively rather than damaging the channel. Thermal annealing at the end of the fabrication process increases device performance by causing interfacial reactions of the source/drain electrodes. HCI causes a significant enhancement in the local asymmetry, especially in the subthreshold region. The subthreshold swing (SS) of the thermally annealed FETs is significantly improved from 9.66 to 0.562 V dec-1 through the energy of HCI generated by a strong horizontal electric field. In addition, the contact resistances (RSD), also called series resistances, extracted by a four-probe measurement and a Y-function method were also improved by decreasing to a 10th through the energy of HCI. To understand the asymmetrical characteristics of the channel after the stress, we performed electrical analysis, electrostatic force microscopy (EFM), and Raman spectroscopy.

19.
ACS Nano ; 14(10): 13557-13568, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33026795

RESUMEN

One of the main limiting factors in the performance of devices based on two-dimensional (2D) materials is Fermi level pinning at the contacts, which creates Schottky barriers (SBs) that increase contact resistance and, for most transition metal dichalcogenides (TMDs), limit hole conduction. A promising method to mitigate these problems is surface charge transfer doping (SCTD), which places fixed charge at the surface of the material and thins the SBs by locally shifting the energy bands. We use a mild O2 plasma to convert the top few layers of a given TMD into a substoichiometric oxide that serves as a p-type SCTD layer. A comprehensive experimental study, backed by TCAD simulations, involving MoS2, MoSe2, MoTe2, WS2, and WSe2 flakes of various thicknesses exposed to different plasma times is used to investigate the underlying mechanisms responsible for SCTD. The surface charge at the top of the channel and the gate-modulated surface potential at the bottom are found to have competing effects on the channel potential, which results in a decrease in the doping-induced threshold shift and an increase in minimum OFF state current with increasing thickness. Additionally, an undoped channel region is shown to mitigate carrier injection issues in sufficiently thin flakes. Notably, the band movements underlying the SCTD effects are independent of the particular semiconductor material, SCTD strategy, and doping polarity. Consequently, our findings provide critical insights for the design of high-performance transistors for a wide range of materials and SCTD mechanisms including TMD devices with strong hole conduction.

20.
ACS Appl Mater Interfaces ; 12(37): 41446-41453, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32830485

RESUMEN

In the past few years, the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) have increased from 3.81 to 25.2%, surpassing those of all almost all thin films solar cells. For high-performance PSCs, it is pivotal to finely regulate the charge dynamics and light management between perovskite and charge-transfer materials to balance the trade-off between optical and electrical properties. In this study, a hemispherical core-shell silver oxide (AgOx) @ silver nanoparticles (Ag NPs) were grown onto the surface of the mesoporous titanium dioxide (m-TiO2) electron-transport layer (ETL) to improve the photogenerated charge transfer without sacrificing the stability of the devices. The results show that the electrical properties of m-TiO2 have been enhanced owing to the injection of a hot carrier in Ag NPs into the m-TiO2 ETL filling the trap states of m-TiO2. However, AgOx on the Ag NP surfaces can isolate the touch between Ag NPs and perovskite, thereby prohibiting the perovskite decomposition. Compared with the control device, the PCE was increased from 17.87 to 20.33% for the device with HOAPs. In the meantime, the long-term stability of the PSCs is not sacrificed, which is pivotal for fabricating PSCs and optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA