Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 126, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256863

RESUMEN

BACKGROUD: Before fertilization, spermatozoa undergo a crucial maturation step called capacitation, which is a unique event regulates the sperm's ability for successful fertilization. The capacitation process takes place as the spermatozoa pass through the female reproductive tract (FRT). Dihydrolipoamide dehydrogenase (DLD) protein is a post-pyruvate metabolic enzyme, exhibiting reactive oxygen species (ROS) production which causes capacitation. Additionally, other vital functions of DLD in buffalo spermatozoa are hyperactivation and acrosome reaction. DLD produces the optimum amount of ROS required to induce capacitation process in FRT. Depending on physiological or pathophysiological conditions, DLD can either enhance or attenuate the production of reactive oxygen species (ROS). Aim of this study was to investigate whether changes in the production of ROS in sperm cells can impact their ability to fertilize by triggering the capacitation and acrosome reaction. RESULTS: In this study, abundance of DLD protein was quantified between high (n = 5) and low fertile bull (n = 5) spermatozoa. It was found that compared to high-fertile (HF) bulls, low-fertile (LF) bulls exhibited significantly (P < 0.05) higher DLD abundances. Herein, we optimised the MICA concentration to inhibit DLD function, spermatozoa were treated with MICA in time (0, 1, 2, 3, 4, and 5 h) and concentrations (1, 2.5, 5, and 10 mmol/L) dependent manner. Maximum DLD inhibition was found to be at 4 h in 10 mmol/L MICA concentration, which was used for further experimentation in HF and LF. Based on DLD inhibition it was seen that LF bull spermatozoa exhibited significantly (P < 0.05) higher ROS production and acrosome reaction in comparison to the HF bull spermatozoa. The kinematic parameters of the spermatozoa such as percent total motility, velocity parameters (VCL, VSL, and VAP) and other parameters (BCF, STR, and LIN) were also decreased in MICA treated spermatozoa in comparison to the control (capacitated) spermatozoa. CONCLUSIONS: The present study provides an initial evidence explaining the buffalo bull spermatozoa with higher DLD abundance undergo early capacitation, which subsequently reduces their capacity to fertilize.

2.
Andrology ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39238428

RESUMEN

BACKGROUND: Recently, the metabolic pathways involved in energy production and the role of aquaglyceroporins in capacitation-associated events have been studied in humans and mice. However, little is known about these in ram spermatozoa. OBJECTIVE: The present study investigated bioenergetic and aquaglyceroporin 3 variations during in vitro capacitation of ram spermatozoa. In addition, differences in testosterone levels between males were examined to determine their influence on capacitation-like changes. MATERIALS AND METHODS: Spermatozoa obtained from nine rams (ejaculates = 36) were incubated for 180 min in three different media (control, capacitating, and aquaglyceroporin-inhibitor media) at 38.5°C. At 0 and 180 min of incubation in each medium, sperm viability, kinetics, chlortetracycline patterns, adenosine triphosphate concentration, lactate excretion (final subproduct of glycolysis), and immunolocalization of aquaporin 3 were evaluated. RESULTS: The increment of the capacitated spermatozoa-chlortetracycline pattern and the hyperactivated-like movement characterized by the highest curvilinear velocity and amplitude of lateral head displacement and the lowest linearity was only recorded after 180 min in the capacitating medium. At this time and conditions, adenosine triphosphate content and lactate excretion decreased, whereas the aquaglyceroporin 3 location in the midpiece and principal piece increased compared to 0 min. Such changes were not observed in the control medium over time. Incubation in the aquaglyceroporin-inhibitor medium for 180 min reduced drastically sperm motility and adenosine triphosphate content compared to the other media. Testosterone analysis revealed a significant individual variability, which was also present in all sperm parameters evaluated. Furthermore, testosterone was negatively correlated with adenosine triphosphate content but positively correlated with lactate excretion levels, sperm viability, motility, capacitated sperm-chlortetracycline pattern, and aquaglyceroporin 3 immunolabeling in the midpiece and principal piece. CONCLUSION: Despite individual differences, capacitation of ram spermatozoa increases adenosine triphosphate consumption, energy metabolism, and aquaglyceroporin 3 location in the midpiece and principal piece, which seems to be related to the acquisition of hyperactivated-like motility. Furthermore, testosterone levels may serve as a valuable tool to select those males with a greater sperm metabolism rate and fertilizing capacity.

3.
Cryobiology ; : 104972, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265648

RESUMEN

The aim of this study was to assess the level of membrane cryodamage through the levels of selected capacitation and apoptosis-associated proteins, together with compositional membrane changes in capacitated (CAP), cryopreserved (CRYO) and non-capacitated bovine spermatozoa (CRTL). Sperm kinetic parameters were analysed by the computer assisted sperm analysis (CASA) while the capacitation patterns were examined with the chlortetracycline (CTC) assay. In the case of DNA integrity, sperm chromatin structure assay and aniline blue staining were used. For the quantification of fatty acid content gas chromatography was performed. Using Western blotting the expression of capacitation (protein kinase C - PKC; phospholipases A2 and Cζ - PLA2, PLCζ; soluble adenylyl cyclase 10 - sAC10) and apoptosis-associated (apoptosis regulator Bax; B-cell lymphoma 2 - Bcl-2; caspase 3) proteins were evaluated. Data indicate a significant decline (p<0.0001) of sperm kinetic parameters and higher occurrence (p<0.0001) of DNA fragmentation in the CRYO group. CTC assay revealed a significant increase of acrosome-reacted spermatozoa in the CRYO group when compared to others. Compositional changes in the sperm membrane were visible as a notable decline of docosahexaenoic acid (p<0.0001) associated with a significant decrease of membrane cholesterol (p<0.05) and proteins (p<0.0001) in the CRYO group while the amount of palmitic, stearic, oleic, and linoleic acid increased (p<0.0001) significantly. Protein expression of all capacitation-associated proteins (PKC, PLA2, PLCζ, sAC10) was significantly down-regulated (p<0.001; p<0.0001) in the CRYO group. Relative quantification of apoptosis-associated proteins revealed increased Bax and decreased Bcl-2 levels in the CRYO group, except for caspase-3, which remained without significant changes.

4.
Environ Toxicol Pharmacol ; : 104565, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265707

RESUMEN

Miltefosine is the first and only drug approved for the treatment of leishmaniasis. It is also known as a PI3K/AKT signaling pathway inhibitor utilized in anti-cancer or anti-viral therapies. However, the impact of miltefosine on male fertility has not been fully understood. Therefore, this study was performed to investigate the effects of miltefosine on sperm function during capacitation. Duroc spermatozoa were exposed to 0, 2.5, 5, 10, 20, 40, and 80µM miltefosine and induced for capacitation. Our results showed that miltefosine dramatically increased the expression of PI3K/AKT signaling pathway-associated proteins. Sperm motility, motion kinetics, capacitation, and tyrosine phosphorylation were significantly suppressed by miltefosine. However, intracellular ATP levels and cell viability were not significantly affected. Our findings suggest that miltefosine may disrupt sperm function by abnormally increasing the levels of PI3K/AKT signaling pathway-associated proteins. Therefore, the harmful effects of miltefosine on male reproduction should be considered when using this drug.

5.
Biochem Biophys Res Commun ; 734: 150610, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217810

RESUMEN

Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.

6.
Mol Reprod Dev ; 91(8): e23766, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39175359

RESUMEN

Dave Garbers' work significantly contributed to our understanding of sperm's regulated motility, capacitation, and the acrosome reaction. These key sperm functions involve complex multistep signaling pathways engaging numerous finely orchestrated elements. Despite significant progress, many parameters and interactions among these elements remain elusive. Mathematical modeling emerges as a potent tool to study sperm physiology, providing a framework to integrate experimental results and capture functional dynamics considering biochemical, biophysical, and cellular elements. Depending on research objectives, different modeling strategies, broadly categorized into continuous and discrete approaches, reveal valuable insights into cell function. These models allow the exploration of hypotheses regarding molecules, conditions, and pathways, whenever they become challenging to evaluate experimentally. This review presents an overview of current theoretical and experimental efforts to understand sperm motility regulation, capacitation, and the acrosome reaction. We discuss the strengths and weaknesses of different modeling strategies and highlight key findings and unresolved questions. Notable discoveries include the importance of specific ion channels, the role of intracellular molecular heterogeneity in capacitation and the acrosome reaction, and the impact of pH changes on acrosomal exocytosis. Ultimately, this review underscores the crucial importance of mathematical frameworks in advancing our understanding of sperm physiology and guiding future experimental investigations.


Asunto(s)
Reacción Acrosómica , Transducción de Señal , Capacitación Espermática , Motilidad Espermática , Espermatozoides , Masculino , Espermatozoides/metabolismo , Espermatozoides/fisiología , Humanos , Reacción Acrosómica/fisiología , Capacitación Espermática/fisiología , Transducción de Señal/fisiología , Animales , Motilidad Espermática/fisiología , Modelos Biológicos , Modelos Teóricos
7.
Biol Res ; 57(1): 57, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39175101

RESUMEN

BACKGROUND: While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na+/Ca2+ exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca2+ outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca2+ influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca2+, reactive oxygen species (ROS) and superoxides were evaluated. RESULTS: Partial and complete blockage of Ca2+ outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation. CONCLUSIONS: Inhibition of outflux and influx of Ca2+ triggered similar effects, thus indicating that both forward and reverse Ca2+ transport through NCX exchangers are essential for sperm capacitation.


Asunto(s)
Calcio , Intercambiador de Sodio-Calcio , Capacitación Espermática , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo , Intercambiador de Sodio-Calcio/efectos de los fármacos , Calcio/metabolismo , Porcinos , Espermatozoides/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Motilidad Espermática/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
8.
Animals (Basel) ; 14(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123702

RESUMEN

Erythropoietin (EPO), a hormone secreted mainly by the kidney, exerts its biological function by binding to its cell-surface receptor (EpoR). The presence of EPO and EpoR in the male and female reproductive system has been verified. Therefore, some of the key properties of EPO, such as its antioxidant and antiapoptotic effects, could improve the fertilizing capacity of spermatozoa. In the present study, the effect of two different concentrations of EPO (10 mIU/µL and 100 mIU/µL) on bovine sperm-quality parameters was evaluated during a post-thawing 4-h incubation at 37 °C. EPO had a positive effect on sperm motility, viability, and total antioxidant capacity. Moreover, EPO inhibited apoptosis, as it reduced both BCL2-associated X apoptosis regulator (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and cleaved cysteine-aspartic proteases (caspases) substrate levels in a dose-dependent manner. In addition, EPO induced sperm capacitation and acrosome reaction in spermatozoa incubated in capacitation conditioned medeia. These results establish a foundation for the physiological role of EPO in reproductive processes and hopefully will provide an incentive for further research in order to fully decipher the role of EPO in sperm physiology and reproduction.

9.
Reprod Domest Anim ; 59(8): e14679, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086072

RESUMEN

In vitro capacitation allows for a greater understanding of the mechanisms underlying fertilization and the development of improved reproductive techniques for improving fertility rates in porcine. Tyrodes albumin lactate pyruvate (TALP) and modified Krebs Ringers Broth (m-KRB) are two medias that are commonly used in research experiments to induce capacitation in boar spermatozoa (Cañón-Beltrán et al., Theriogenology, 198, 2023 and 231; Oberlender et al., Archivos de Medicina Veterinaria, 44, 2012 and 201; Sahoo et al., International Journal of Biological Macromolecules, 241, 2023 and 124502). Moreover, understanding the morphological and functional changes in boar spermatozoa at different hours of capacitation periods might aid in the development of novel techniques for improving sperm quality and increasing the litter size. This study was carried out to investigate the effect of Tyrode albumin lactate pyruvate and modified Krebs Ringers Broth media on in vitro capacitation of HD-K75 boar spermatozoa at three different periods of incubation. A total of 24 ejaculate from four clinically healthy, 10-12 months aged HD-K75 boars, maintained at ICAR-All India Coordinated Research Project (AICRP) on pig were selected. Semen was collected by 'Simple fist' method using a portable dummy. The semen samples having 200 mL volume, 103 × 106 spermatozoa/ml concentration and 70% initial motility were selected and split into two parts and suspended in TALP and m-KRB media, respectively, and incubated for 5 h at 37°C. Seminal parameters viz. sperm viability, plasma membrane integrity and acrosomal integrity were estimated in the samples at 0, 3 and 5 h of incubation. This study revealed that there was significant variation between media in live acrosome-reacted (p < .05) and HOST-reacted (p < .01) spermatozoa, while between capacitation periods significant (p < .01) variation was observed in hyperactivated spermatozoa, live acrosome-reacted spermatozoa, HOST-reacted spermatozoa, FITC-labelled PSA, extracellular protein and sperm cholesterol. Non-significant variation was observed in total phospholipid. TALP showed overall better consequence on sperm viability, plasma membrane and acrosomal integrity of boar spermatozoa. From this study, it could be concluded that both TALP and m-KRB media were virtuous to induce capacitation in HD-K75 boar spermatozoa. TALP media, however, had a better effect on sperm viability, plasma membrane and acrosomal integrity of boar spermatozoa. Out of the three different periods, 3 h capacitation period resulted in significantly (p < .01) higher incidence of sperm viability, plasma membrane and acrosomal integrity in HD-K75 boar spermatozoa.


Asunto(s)
Capacitación Espermática , Espermatozoides , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Porcinos , Medios de Cultivo/farmacología , Motilidad Espermática/efectos de los fármacos , Análisis de Semen/veterinaria
10.
Sci Rep ; 14(1): 20159, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39215164

RESUMEN

Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteómica , Capacitación Espermática , Espermatozoides , Ubiquitina , Capacitación Espermática/fisiología , Animales , Masculino , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Porcinos , Espermatozoides/metabolismo , Espermatozoides/fisiología , Proteómica/métodos , Proteoma/metabolismo
11.
Theriogenology ; 229: 1-7, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39133991

RESUMEN

After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components. In this study, we aimed at establishing a new capacitation protocol for bovine sperm, using calcium ionophore. Similar to our findings using mouse sperm, bovine sperm treated with Ca2+ ionophore A23187 were quickly immobilized. However, these sperm initiated capacitation after ionophore removal in fresh medium without heparin, and independent of the Protein Kinase A. When A23187-treated sperm were used on in vitro fertilization (IVF) procedures without heparin, eggs showed cleavage rates similar to standardized IVF protocols using heparin containg synthetic oviduct fluid (IVF-SOF). However, when A23187 pre-treated sperm were further used for inseminating eggs in complete IVF-SOF-heparin, a significantly higher percentage of embryo development was observed, suggesting a synergism between two different signaling pathways during bovine sperm capacitation. These results have the potential to improve current protocols for bovine IVF that could also be applied in other species of commercial interest.


Asunto(s)
Calcimicina , Ionóforos de Calcio , Criopreservación , Fertilización In Vitro , Preservación de Semen , Capacitación Espermática , Espermatozoides , Animales , Bovinos , Masculino , Ionóforos de Calcio/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Fertilización In Vitro/veterinaria , Fertilización In Vitro/métodos , Calcimicina/farmacología , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Capacitación Espermática/efectos de los fármacos , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Femenino , Técnicas de Cultivo de Embriones/veterinaria , Desarrollo Embrionario/efectos de los fármacos
12.
Antioxidants (Basel) ; 13(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39199131

RESUMEN

Sperm capacitation is a complex process essential for the spermatozoon to recognize and fertilize the oocyte. For capacitation to occur, human spermatozoa require low levels of reactive oxygen species (ROS), increased protein tyrosine phosphorylation, and sufficient levels of energy metabolites such as citrate. Human spermatozoa are exposed to high concentrations of citrate from the seminal plasma, yet the role of citrate in sperm capacitation is largely unknown. We report that citrate can support capacitation in human spermatozoa incubated with no other energy metabolites in the capacitation medium. Reduced capacitation levels were observed in spermatozoa incubated with inhibitors of mitochondrial citrate transporter (CIC), cytosolic ATP-citrate lyase (ACLY), malic enzyme (ME), and nitric oxide synthase (NOS). The role of citrate metabolism in ROS production was further elucidated as citrate increased NO● production in capacitated spermatozoa, whereas inhibition of ACLY reduced NO● production. This research characterizes a novel metabolic pathway for citrate to produce NO● in the process of human sperm capacitation.

13.
Animals (Basel) ; 14(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39199899

RESUMEN

Ram sperm undergo a sequence of physiological and biochemical changes collectively termed as capacitation to perform oocyte fertilization. However, the protein changes induced by capacitation remain in need of further exploration. Thus, the present study investigated the comparative proteomic profiling in ram spermatozoa under non-capacitating (NC) and capacitating (CAP) conditions in vitro using a liquid chromatography-tandem mass spectrometry combined with tandem mass tag labeling strategy. As a results, 2050 proteins were identified and quantified; 348 of them were differentially abundant, with 280 of the proteins upregulated and 68 of the proteins downregulated between the CAP and NC spermatozoa, respectively. Functional enrichment analysis indicated that the differentially abundant proteins Prune Exopolyphosphatase 1, Galactose-1-Phosphate Uridylyltransferase, and ATP Citrate Lyase were strictly related to energy production and conversion, and Phosphoglycolate phosphatase, Glucosamine-6-Phosphate Deaminase 1 and 2 were related to metabolism, RNA processing, and vesicular transport pathways. Furthermore, the networks of protein-protein interaction indicated a strong interaction among these differential proteins in annotated pathways such as ubiquitin and transport metabolism. Our findings indicate that capacitation progress might be regulated through different pathways, providing insights into mechanisms involved in ram sperm capacitation and fertility.

14.
Anim Reprod Sci ; 268: 107560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029370

RESUMEN

Intracytoplasmic sperm injection (ICSI) remains inefficient in cattle. One reason could lie in the injection of oocytes with sperm that have not undergone molecular changes associated with in vivo capacitation and fertilizing ability. This study aimed to enhance the efficiency of bovine intracytoplasmic sperm injection (piezo-ICSI) by employing fluorescent-activated cell sorting (FACS) to select the sperm population before injection based on capacitation markers. First, we evaluated the effects of incubating thawed sperm for 2 hours with different capacitating inductors: heparin, methyl-beta-cyclodextrin (MßCD), and dibutyryl cyclic AMP (dbcAMP), alone or in combinations in a basal capacitating (C) medium (Sp-TALP). Sperm capacitation and quality markers were evaluated by flow cytometry, revealing heparin as the most effective inducer of sperm capacitation changes. It, therefore, this treatment was chosen as the sperm pretreatment for FACS-piezo-ICSI. Two cell populations showing high capacitating levels (Heparin-HCL) and low capacitating levels (Heparin-LCL) of the markers associated with sperm capacitation i(Ca2+) levels and acrosome integrity were selected by FACS and used for sperm injection. Pronuclear formation was significantly higher when ICSI was performed with Heparin-HCL sperm than with Heparin-LCL and the control group (Heparin unsorted) groups (50 %, 10 %, and 20 %, respectively). Furthermore, injecting Heparin-HCL sperm resulted in a higher blastocyst rate (22.5 %) than Heparin-LCL (10 %) and the control group (15.2 %). In conclusion, heparin treatment effectively induced changes associated with sperm capacitation. The combination of Heparin-HCL treatment and FACS enabled precise selection of capacitated sperm before ICSI, enhancing the efficiency of this technology in the bovine species.


Asunto(s)
Citometría de Flujo , Capacitación Espermática , Inyecciones de Esperma Intracitoplasmáticas , Espermatozoides , Animales , Masculino , Bovinos/embriología , Capacitación Espermática/efectos de los fármacos , Citometría de Flujo/veterinaria , Espermatozoides/fisiología , Espermatozoides/efectos de los fármacos , Inyecciones de Esperma Intracitoplasmáticas/veterinaria , Inyecciones de Esperma Intracitoplasmáticas/métodos , Femenino , Heparina/farmacología
15.
Reprod Toxicol ; 129: 108678, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068997

RESUMEN

Ethylene oxide (E.O) is an epoxide compound, and it has been utilized as a sterilizer or production of ether compounds in several industries. Although the toxic effects of E.O on bacteria and mammals have been reported, its effects on male reproductive toxicity during sperm capacitation are not fully understood. Therefore, this study was designed to evaluate the effects of E.O exposure during sperm capacitation. Boar spermatozoa were treated with various E.O concentrations (0, 0.1, 1, 10, and 100 µÐœ). After exposure, sperm motility, motion kinematics, capacitation status, intracellular ATP levels, cell viability, expression levels of protein kinase A (PKA) activation, and tyrosine phosphorylation were evaluated. Results revealed that E.O exposure significantly decreased sperm motility, motion kinematics, and intracellular ATP levels but significantly increased the capacitated spermatozoa. In addition, the PKA activation and tyrosine phosphorylation were abnormally changed. According to our results, E.O may cause toxic effects on sperm function during capacitation, which induces male reproductive toxicity. Consequently, we suggest that male reproductive toxicity should be considered when using E.O.


Asunto(s)
Adenosina Trifosfato , Proteínas Quinasas Dependientes de AMP Cíclico , Capacitación Espermática , Motilidad Espermática , Espermatozoides , Masculino , Animales , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Porcinos , Fosforilación , Adenosina Trifosfato/metabolismo , Supervivencia Celular/efectos de los fármacos , Tirosina/metabolismo
16.
Andrology ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38993010

RESUMEN

BACKGROUND: Mammalian spermatozoa need to undergo a process named capacitation to be able to fertilize an oocyte. During their journey in the female tract, spermatozoa obtain energy while exposed to a changing environment containing a variety of metabolic substrates. The energy requirements for sperm capacitation are species-specific. In addition, the available energy source can hinder the process of sperm capacitation and eventually the acrosome reaction. OBJECTIVES: To evaluate whether the metabolic substrates available in the in vitro sperm capacitation medium allow or interfere with the pig sperm capacitation process. MATERIAL AND METHODS: The effect of different metabolic substrates on sperm capacitation process was evaluated by analyzing phosphorylation in the p32 protein; the acrosome reaction and the ATP intracellular content. RESULTS: The presence of glucose in the in vitro capacitating medium diminishes, in a concentration-dependent manner, parameters associated with the capacitated status: induced acrosome exocytosis, plasma membrane destabilization, and protein tyrosine phosphorylation. Conversely, sperm incubation with pyruvate or lactate, either individually or in combination, allows the attainment of the capacitated status. Unexpectedly, pig spermatozoa incubated without any extracellular energy substrates or with a non-metabolizable substrate (l-glucose) for 4 h displayed similar sperm viability to the control and exhibited a capacitated phenotype. The capacitation-like phenotype observed in starved pig spermatozoa (absence of glucose, lactate, and pyruvate) was dependent on extracellular bicarbonate and calcium levels, and these spermatozoa exhibited lower intracellular ATP content compared to those not capacitated. Nevertheless, the intracellular content of calcium was not modified in comparison to the control. DISCUSSION AND CONCLUSIONS: Our findings suggest that the metabolic substrates used to fuel pig sperm metabolism are important in achieving the capacitated status. The results of this work could be used to refine the capacitating medium employed in pig in vitro fertilization.

17.
Biol Res ; 57(1): 44, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965573

RESUMEN

BACKGROUND: Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 µg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS: Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS: Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.


Asunto(s)
Reacción Acrosómica , Acrosoma , Calcio , Plomo , Motilidad Espermática , Espermatozoides , Masculino , Espermatozoides/efectos de los fármacos , Calcio/metabolismo , Motilidad Espermática/efectos de los fármacos , Animales , Acrosoma/efectos de los fármacos , Plomo/toxicidad , Reacción Acrosómica/efectos de los fármacos , AMP Cíclico/metabolismo , Bovinos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Análisis de Semen , Daño del ADN/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Compuestos Organometálicos/farmacología
18.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062825

RESUMEN

Capacitation involves tyrosine phosphorylation (TP) as a key marker. Lifestyle-related factors, such as obesity and smoking, are recognized for their adverse effects on semen quality and male fertility, yet the underlying mechanisms, including their potential impact on TP, remain unclear. Moreover, the effect of sperm cryopreservation on TP at the human sperm population level is unexplored. Flow cytometry analysis of global TP was performed on pre-capacitated, post-capacitated and 1- and 3-hours' incubated fresh and frozen-thawed samples from sperm donors (n = 40). Neither being overweight nor smoking (or both) significantly affected the percentage of sperm showing TP. However, elevated BMI and smoking intensity correlated with heightened basal TP levels (r = 0.226, p = 0.003) and heightened increase in TP after 3 h of incubation (r = 0.185, p = 0.017), respectively. Cryopreservation resulted in increased global TP levels after capacitation but not immediately after thawing. Nonetheless, most donors' thawed samples showed increased TP levels before and after capacitation as well as after incubation. Additionally, phosphorylation patterns in fresh and frozen-thawed samples were similar, indicating consistent sample response to capacitation stimuli despite differences in TP levels. Overall, this study sheds light on the potential impacts of lifestyle factors and cryopreservation on the dynamics of global TP levels during capacitation.


Asunto(s)
Índice de Masa Corporal , Criopreservación , Capacitación Espermática , Espermatozoides , Tirosina , Humanos , Criopreservación/métodos , Masculino , Fosforilación , Tirosina/metabolismo , Espermatozoides/metabolismo , Adulto , Fumar Cigarrillos/efectos adversos , Preservación de Semen/métodos , Análisis de Semen
19.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063161

RESUMEN

Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans.


Asunto(s)
Capacitación Espermática , Espermatozoides , Zinc , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Zinc/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Porcinos , Metaboloma , Ácidos Grasos/metabolismo , Cromatografía de Gases y Espectrometría de Masas
20.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000054

RESUMEN

Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.


Asunto(s)
Disruptores Endocrinos , Fertilidad , Plaguicidas , Humanos , Plaguicidas/toxicidad , Plaguicidas/efectos adversos , Masculino , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/efectos adversos , Animales , Fertilidad/efectos de los fármacos , Infertilidad Masculina/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Reproducción/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA